Nanoplastics derived from plastic waste are increasingly accumulating in agricultural farmlands. The absorption and deposition of plastic particles by crops pollute the food supply and pose unanticipated health concerns to human beings. However, the effects of nanoplastics on crop grains cultivated in polluted soil remain relatively unknown.
A recent study published in the journal Advanced Science tackles this problem by investigating the transportation of polystyrene nanoplastics (PS-NPs) in various crops, such as peanuts and rice. This important research also examines the influence of nanoplastics on the productivity and nutritional value of crop grains.
Polystyrene Nanoplastics: Overview and Environmental Concerns
Plastic manufacturing has steadily expanded over the previous 30 years, with annual output exceeding 360 million tons in 2018. Polystyrene (PS), which has a high volatile constituent ratio, has emerged as a prominent and toxic plastic substance.
Large plastic wastes may be split into microplastics (100 nanometers – 5 millimeteres) and subsequently decomposed into nanoplastics (<100 nanometers) due to global warming, ultraviolet radiation, and slow microbial degradation. This growing amount of nanoplastic waste is continuously polluting the oceans, rivers, and farmlands.
Nanoplastics have been identified as substantial marine pollutants, with hundreds of thousands of metric tons estimated to be drifting on the surfaces of the main marine ecosystems. However, recent research has also shown nanoplastic pollution in freshwater bodies and various terrestrial habitats.
Impacts of Nanoplastics on Crops and Terrestrial Plants
Crops, which are essential components of the food supply chain, can absorb and retain harmful nanoparticles from the environment. However, terrestrial habitats have recently received significantly less research interest than their aquatic equivalents concerning nanoplastic toxicity.
Some investigations have shown that nanoplastics can penetrate plant roots and reach the leaves. Polystyrene nanoplastics (PS-NPs) can infiltrate plant cells via cracks in wheat and lettuce crops. Additionally, charged nanoplastics have the potential to aggregate and significantly hinder the development and reproduction of a variety of terrestrial plants.
Consuming nanoplastic-contaminated crop grains can also endanger human health. Although recent studies have assessed the entry, dispersion, and cytotoxicity of nanoplastics in crops, little is understood about nanoplastic deposition and activities inside seeds, which are the fundamental living constituent of the biosphere at the lowest nutritional stage of the food chain.
Highlights and Key Developments of the Current Study
The current research sought to ascertain if nanoplastics in soil could migrate into crop grains. Rice and peanut were chosen as crop models since their seeds develop on the ground and underground, respectively.
As a vital socioeconomic crop, rice is the primary diet of more than half of the planet’s population. Also, peanuts are a good source of proteins and fatty acids (FAs), ranking second only to soybeans in both volume and nutrition.
The treatment of these crops with polystyrene nanoplastics (PS-NPs) raised the empty-shell numbers of rice grain by 35.45%, resulting in a 3.02% decrease in the seed-setting rate of rice and a 3.45% decrease in the average seed weight of peanuts. Moreover, PS-NPs harmed the nutritional quality of rice and peanut crops by lowering the number of essential minerals, amino acids, and unsaturated fatty acids.
The researchers in this work proved for the first time that nanoplastics could accumulate in rice and peanut seeds. Similarly, nanoplastics had a significant detrimental impact on crop grain quality. These findings suggest that the usage of plastic items in agriculture has a negative impact on food security across the food chain.
Future Outlook
Given their widespread dispersion, future research should look at the possible ecological consequences of nanoplastics, which can damage agricultural production and nutrient delivery.
Relevant studies have revealed that PS-NPs have a high surface-to-volume and hydrophilic nature and might act as transporters for various environmental pollutants such as insecticides, herbicides, and toxic substances, allowing pollutants to accumulate in crop grains.
As a result, introducing nanoplastics into crop grains may be accompanied by additional dangers that threaten public health more than the nanoplastics themselves.
The experiments in this work used PS-NPs to investigate the absorption of nanoplastics and their impact on crop grains. However, there are various sorts of nanoplastics in the atmosphere, and nanoplastics made of other substances may have different effects on crop grains. As a result, future studies should examine the use of nanoplastics comprised of various materials.

News
Polaritons open up a new lane on the semiconductor highway
On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today's most cutting-edge semiconductors, those phonons don't remove enough heat. That's why [...]
EU seeks agreement on world’s first AI law
The European Union will seek to thrash out an agreement on sweeping rules to regulate artificial intelligence on Wednesday, following months of difficult negotiations in particular on how to monitor generative AI applications like [...]
Lightning sparks scientists’ design of ultraviolet-C device for food sanitization
Scientists at the University of Illinois Urbana-Champaign have developed a portable, self-powered ultraviolet-C device called the Tribo-sanitizer that can inactivate two of the bacteria responsible for many foodborne illnesses and deaths. The Tribo-sanitizer's UVC [...]
3D Eye Scans Emerge as a Crucial Tool in Combating Kidney Disease
A new study indicates that 3D retinal scans could revolutionize the early detection and monitoring of kidney disease, offering a non-invasive and efficient diagnostic tool. 3D eye scans can reveal vital clues about kidney [...]
Researchers develop a blood test to identify individuals at risk of developing Parkinson’s disease
Research carried out at Oxford's Nuffield Department of Clinical Neurosciences has led to the development of a new blood-based test to identify the pathology that triggers Parkinson's disease before the main symptoms occur. This [...]
“Challenging the Paradigm” – Scientists Develop New Approach To Stop Cancer Growth
Biochemists at Case Western Reserve are concentrating on the degradation of a key protein that drives cancer; represents a major shift in research. Biochemical researchers at Case Western Reserve University have discovered a a new function [...]
Researcher develops a chatbot with an expertise in nanomaterials
A researcher has just finished writing a scientific paper. She knows her work could benefit from another perspective. Did she overlook something? Or perhaps there's an application of her research she hadn't thought of. [...]
Research shows human behavior guided by fast changes in dopamine levels
What happens in the human brain when we learn from positive and negative experiences? To help answer that question and better understand decision-making and human behavior, scientists are studying dopamine. Dopamine is a neurotransmitter [...]
Tiny robots made from human cells heal damaged tissue
The ‘anthrobots’ were able to repair a scratch in a layer of neurons in the lab. Scientists have developed tiny robots made of human cells that are able to repair damaged neural tissue1. The [...]
Antimicrobial Resistance – A Global Concern
Key facts Antimicrobial resistance (AMR) is one of the top global public health and development threats. It is estimated that bacterial AMR was directly responsible for 1.27 million global deaths in 2019 and contributed to [...]
Advancing Pancreatic Cancer Treatment with Nanoparticle-Based Chemotherapy
Pancreatic cancer, a particularly lethal form of cancer and the fourth leading cause of cancer-related deaths in the western world, often remains undiagnosed until its advanced stages due to a lack of early symptoms. [...]
The ‘jigglings and wigglings of atoms’ reveal key aspects of COVID-19 virulence evolution
Richard Feynman famously stated, "Everything that living things do can be understood in terms of the jigglings and wigglings of atoms." This week, Nature Nanotechnology features a study that sheds new light on the evolution of the coronavirus [...]
AI system self-organizes to develop features of brains of complex organisms
Cambridge scientists have shown that placing physical constraints on an artificially-intelligent system—in much the same way that the human brain has to develop and operate within physical and biological constraints—allows it to develop features [...]
How Blind People Recognize Faces via Sound
Summary: A new study reveals that people who are blind can recognize faces using auditory patterns processed by the fusiform face area, a brain region crucial for face processing in sighted individuals. The study employed [...]
Treating tumors with engineered dendritic cells
Cancer biologists at EPFL, UNIGE, and the German Cancer Research Center (Heidelberg) have developed a novel immunotherapy that does not require knowledge of a tumor's antigenic makeup. The new results may pave the way [...]
Networking nano-biosensors for wireless communication in the blood
Biological computing machines, such as micro and nano-implants that can collect important information inside the human body, are transforming medicine. Yet, networking them for communication has proven challenging. Now, a global team, including EPFL [...]