Nanoplastics derived from plastic waste are increasingly accumulating in agricultural farmlands. The absorption and deposition of plastic particles by crops pollute the food supply and pose unanticipated health concerns to human beings. However, the effects of nanoplastics on crop grains cultivated in polluted soil remain relatively unknown.
A recent study published in the journal Advanced Science tackles this problem by investigating the transportation of polystyrene nanoplastics (PS-NPs) in various crops, such as peanuts and rice. This important research also examines the influence of nanoplastics on the productivity and nutritional value of crop grains.
Polystyrene Nanoplastics: Overview and Environmental Concerns
Plastic manufacturing has steadily expanded over the previous 30 years, with annual output exceeding 360 million tons in 2018. Polystyrene (PS), which has a high volatile constituent ratio, has emerged as a prominent and toxic plastic substance.
Large plastic wastes may be split into microplastics (100 nanometers – 5 millimeteres) and subsequently decomposed into nanoplastics (<100 nanometers) due to global warming, ultraviolet radiation, and slow microbial degradation. This growing amount of nanoplastic waste is continuously polluting the oceans, rivers, and farmlands.
Nanoplastics have been identified as substantial marine pollutants, with hundreds of thousands of metric tons estimated to be drifting on the surfaces of the main marine ecosystems. However, recent research has also shown nanoplastic pollution in freshwater bodies and various terrestrial habitats.
Impacts of Nanoplastics on Crops and Terrestrial Plants
Crops, which are essential components of the food supply chain, can absorb and retain harmful nanoparticles from the environment. However, terrestrial habitats have recently received significantly less research interest than their aquatic equivalents concerning nanoplastic toxicity.
Some investigations have shown that nanoplastics can penetrate plant roots and reach the leaves. Polystyrene nanoplastics (PS-NPs) can infiltrate plant cells via cracks in wheat and lettuce crops. Additionally, charged nanoplastics have the potential to aggregate and significantly hinder the development and reproduction of a variety of terrestrial plants.
Consuming nanoplastic-contaminated crop grains can also endanger human health. Although recent studies have assessed the entry, dispersion, and cytotoxicity of nanoplastics in crops, little is understood about nanoplastic deposition and activities inside seeds, which are the fundamental living constituent of the biosphere at the lowest nutritional stage of the food chain.
Highlights and Key Developments of the Current Study
The current research sought to ascertain if nanoplastics in soil could migrate into crop grains. Rice and peanut were chosen as crop models since their seeds develop on the ground and underground, respectively.
As a vital socioeconomic crop, rice is the primary diet of more than half of the planet’s population. Also, peanuts are a good source of proteins and fatty acids (FAs), ranking second only to soybeans in both volume and nutrition.
The treatment of these crops with polystyrene nanoplastics (PS-NPs) raised the empty-shell numbers of rice grain by 35.45%, resulting in a 3.02% decrease in the seed-setting rate of rice and a 3.45% decrease in the average seed weight of peanuts. Moreover, PS-NPs harmed the nutritional quality of rice and peanut crops by lowering the number of essential minerals, amino acids, and unsaturated fatty acids.
The researchers in this work proved for the first time that nanoplastics could accumulate in rice and peanut seeds. Similarly, nanoplastics had a significant detrimental impact on crop grain quality. These findings suggest that the usage of plastic items in agriculture has a negative impact on food security across the food chain.
Future Outlook
Given their widespread dispersion, future research should look at the possible ecological consequences of nanoplastics, which can damage agricultural production and nutrient delivery.
Relevant studies have revealed that PS-NPs have a high surface-to-volume and hydrophilic nature and might act as transporters for various environmental pollutants such as insecticides, herbicides, and toxic substances, allowing pollutants to accumulate in crop grains.
As a result, introducing nanoplastics into crop grains may be accompanied by additional dangers that threaten public health more than the nanoplastics themselves.
The experiments in this work used PS-NPs to investigate the absorption of nanoplastics and their impact on crop grains. However, there are various sorts of nanoplastics in the atmosphere, and nanoplastics made of other substances may have different effects on crop grains. As a result, future studies should examine the use of nanoplastics comprised of various materials.

News
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]
Instant coffee may damage your eyes, genetic study finds
A new genetic study shows that just one extra cup of instant coffee a day could significantly increase your risk of developing dry AMD, shedding fresh light on how our daily beverage choices may [...]