Researchers have used liquid metals to develop new bacteria-destroying technology that could be the answer to the deadly problem of antibiotic resistance.

The technology uses nano-sized particles of magnetic liquid metal to shred bacteria and bacterial biofilm – the protective “house” that bacteria thrive in – without harming good cells.

Published in ACS Nano, the research led by RMIT University offers a groundbreaking new direction in the search for better bacteria-fighting technologies.

Antibiotic resistance is a major global health threat, causing at least 700,000 deaths a year. Without action, the death toll could rise to 10 million people a year by 2050, overtaking cancer as a cause of death.

The biggest issues are the spread of dangerous, drug-resistant superbugs and the growth of bacterial biofilm infections, which can no longer be treated with existing antibiotics.

Dr Aaron Elbourne said antibiotics had revolutionised health since they were discovered 90 years ago but were losing effectiveness due to misuse.

“We’re heading to a post-antibiotic future, where common bacterial infections, minor injuries and routine surgeries could once again become deadly,” Elbourne, a Postdoctoral Fellow in the Nanobiotechnology Laboratory at RMIT, said.

“It’s not enough to reduce antibiotic use, we need to completely rethink how we fight bacterial infections.

“Bacteria are incredibly adaptable and over time they develop defences to the chemicals used in antibiotics, but they have no way of dealing with a physical attack.

“Our method uses precision-engineered liquid metals to physically rip bacteria to shreds and smash through the biofilm where bacteria live and multiply.

“With further development, we hope this technology could be the way to help make antibiotic resistance history.”

Image Credit:  RMIT

News This Week

Liquid Lightning: Nanotechnology Unlocks New Energy

EPFL researchers have discovered that nanoscale devices harnessing the hydroelectric effect can harvest electricity from the evaporation of fluids with higher ion concentrations than purified water, revealing a vast untapped energy potential. Evaporation is a natural [...]