A recent article published in the journal ACS Nano discusses the application of Escherichia coli (E. coli)-mimetic nanomaterials for photolytic treatment of CT-26 or 4T1 tumors.
The authors synthesized the target nanomaterials using E. coli membrane proteins, gold nanorods (AuNRs), and adhesion proteins and named them E. coli-mimetic AuNRs (ECA). Further, the synthesized ECA showed a preventive effect in mice with CT-26 or 4T1 tumors under 808-nanometer laser irradiations.
Metastasis or reoccurrence are the key reasons behind the increase in cancer mortality, and treating recurrent or metastatic cancers is the end goal of cancer therapy. Combination therapy is an effective treatment for metastasis and reoccurrence. Further, combining nanomaterial-based phototherapy with chemotherapy has a scope in cancer treatment.
Nanomaterials in Cancer Therapy
Selective treatment of cancer cells through immunotherapy involves activation of immune cells, especially T lymphocytes aiding in eliminating cancer by inducing antigen-specific cytotoxicity. In this context, the dendritic cells (DCs) activated T cells selectively destroy antigen-expressing cells in cancer treatment.
Photothermal therapy (PTT) used for localized cancer treatment involves light energy conversion into thermal energy upon irradiation with a near-infrared (NIR) laser.
Nanomaterials can carry drugs to specific targets and aid in effective disease treatment. Further, they are used in combinational therapy to deliver more than one drug. Moreover, nanoparticles based on inorganic materials such as iron oxide nanoparticles, mesoporous silica nanoparticles, AuNRs, and quantum dots are effective PTT agents. AuNRs are efficient for photothermal conversion and surface functionalization and have good biocompatibility. However, cetyltrimethylammonium bromide (CTAB) on their surface makes them highly toxic, and surface modification of AuNRs helps reduce their toxicity.
ECA in Cancer Treatment
In the present study, the authors optimized the sonication and temperature conditions to synthesize ECA. Under NIR irradiation, while the AuNR in ECA had a phototherapeutic effect, the anticancer immunity was induced by the adhesion and surface proteins of ECA. Further, the authors used the synthesized ECA to treat primary tumors and secondary metastatic cancer in mice. The results revealed that the NIR laser light at 808 nanometers raised the temperature in ECA-treated tumor cells and induced apoptotic or necrotic cell death, exhibiting a therapeutic effect on CT-26 and 4T1 tumors in mice.
ClearColi lysate, fimbrin D-mannose-specific adhesin (FimH), and NIR laser irradiation activated immune cells, including T cells and DCs in tumor-draining lymph nodes (tdLNs). Finally, the mice transplanted with CT-26 or 4T1 tumors were cured of the primary tumor and blocked secondary lung metastasis on treatment with ECA.
ECA Characterization and Evaluation of its Therapeutic Potential
The morphology of ECA was analyzed by employing transmission electron microscopy (TEM). The resulting images showed a liposomal corona on the surface of AuNR on the peripheral side of liposome-coated AuNR (LCA) and ECA. The dynamic light scattering (DLS) studies revealed that the hydrodynamic sizes of LCA and ECA were 93.72 ± 2.7 and 116.8 ± 6.5 nanometers, respectively. Further, LCA and ECA showed a negative zeta potential of −4.6 and −12.7 millivolts.
The analysis of ECA using Fourier-transform infrared (FT-IR) spectra revealed characteristic peaks of phospholipids at 1735-centimeter inverse that corresponds to the carbonyl group, 1230-centimeter inverse to metaphosphate ion (PO2−), 1075-centimeter inverse to ether linkage (C-O-O) and peaks at 1646, and 1394-centimeter inverse that corresponds to amide bond. This data confirmed ECA modification with phospholipids, ClearColi lysate, and FimH on the surface of AuNR.
The studies of the photothermal effect of AuNR, LCA, and ECA revealed that the NIR irradiation on these nanomaterials induced a temperature rise and stimulated apoptotic/necrotic cell death. However, there was no temperature rise or apoptotic/necrotic cell death without laser irradiation, thus confirming the application of AuNR, LCA, and ECA as photothermal materials for tumor treatment.
Further, injecting Bagg Albino (BALB/c) mouse with PBS, liposome, FimH, liposome + FimH, AuNR, LCA, and ECA and irradiating with NIR laser of 808 nanometers showed a temperature rise at the tumor sites of AuNR, LCA, and ECA. However, the tumors treated with PBS, liposome, FimH, liposome + FimH had no response. Twenty days after treatment, the mice did not show tumor growth, reoccurrence, liver toxicity, or alanine aminotransferase (ALT) levels elevation in serum. This confirms the potential of AuNR, LCA, and ECA as PTT agents against tumors.
Later, the authors observed that the mice treated with AuNR and LCA PTT agents as the first tumor treatment showed partial resistance to the second cancer challenge without antigen-specific T-cell activities. However, the ECA PTT treatment stimulated antigen production and immune activation to promote antigen-specific immune activity, thus protecting against lung metastatic cancer (second challenge) in mice.
Conclusion
The authors of this study realized the goal of treating cancer metastasis or recurrence with a novel ECA nanomaterial. The synthesized ECA upon NIR laser irradiation-induced immune cell activation in the tumor-draining lymph nodes. Further ECA showed a therapeutic effect against CT-26 colonic epithelial cell carcinoma and 4T1 orthotopic breast cancer.
Thus, the results show the dual functionality of ECA nanomaterials as PTT for primary cancer treatment and immunotherapy against recurrence and metastasis. The authors believe that ECA will be used to block metastasis and treat primary cancers in humans in the future.

News
Cancer and AI – Can ChatGPT Be Trusted?
A study published in the Journal of The National Cancer Institute Cancer Spectrum delved into the increasing use of chatbots and artificial intelligence (AI) in providing cancer-related information. The researchers discovered that these digital resources accurately [...]
Breathing New Life: Oxygen Therapy Improves Heart Function in Long COVID Patients
A small trial has found that hyperbaric oxygen therapy (HBOT) may help restore proper heart function in patients with post-COVID syndrome, with participants in the HBOT group experiencing a significant increase in global longitudinal [...]
Wireless Brain-Spine Interface: A Leap Towards Reversing Paralysis
Summary: In a pioneering study, researchers designed a wireless brain-spine interface enabling a paralyzed man to walk naturally again. The ‘digital bridge’ comprises two electronic implants — one on the brain and another on the [...]
New study reveals a gel that promises to wipe out brain cancer for good
An anti-cancer gel promises to wipe out glioblastoma permanently, a feat that's never been accomplished by any drug or surgery. So what makes this gel so special? Scientists at Johns Hopkins University (JHU) have [...]
New production process for therapeutic nanovesicles
Particles known as extracellular vesicles play a vital role in communication between cells and in many cell functions. Released by cells into their environment, these “membrane particles” consist of a cellular membrane carrying a [...]
Could studying African killifish be the secret cure to sarcopenia?
The Australian Regenerative Medicine Institute (ARMI) at Monash University suggests that muscle wasting, known as sarcopenia, may be reversed in late-life The study utilized the African killifish as a model and found that muscles revert [...]
Virtual AI Radiologist: ChatGPT Passes Radiology Board Exam
The most recent version of ChatGPT, an AI chatbot developed for language interpretation and response generation, has successfully passed a radiology board-style exam, demonstrating both its potential and limitations, according to research studies published [...]
Harnessing Energy Waves: Smart Material Prototype Challenges Newton’s Laws of Motion
University of Missouri researchers designed a prototype of a small, lightweight active ‘metamaterial’ that can control the direction and intensity of energy waves. Professor Guoliang Huang of the University of Missouri has developed a [...]
Nanotechnology revolutionizes the way cancer-fighting T cells navigate and combat tumors
Vanderbilt researchers are bolstering the fight against cancer with technology that enhances the effectiveness of T cells that attack tumors. The cutting-edge research was recently published in the journal Science Immunology. Cancers co-opt both [...]
Molecular “Superpower” of Antibiotic-Resistant Bacteria Revealed in New Research
A species of ordinary gut bacteria that we all carry flourishes when the intestinal flora is knocked out by a course of antibiotics. Since the bacteria is naturally resistant to many antibiotics, it causes problems, particularly [...]
Human DNA Is All Over The Planet, And Scientists Are Worried
Every skin flake, hair follicle, eyelash, and spit drop cast from your body contains instructions written in a chemical code, one that is unique to you. According to a new study, technology has advanced [...]
Long COVID: The Invisible Consequence of Socioeconomic Inequality
A recent study conducted by the Universities of Southampton and Oxford reveals a strong correlation between the incidence of long COVID and the level of area-specific deprivation. It found that individuals from the most deprived regions are 46 [...]
Mutation Mystery: Unraveling the Secret Behind COVID-19’s Rapid Spread
Molecular modeling suggests structural consequences of an early protein mutation that promoted viral transmission. RIKEN researchers discovered that an early mutation (D614G) in the SARS-CoV-2 virus may have contributed to its rapid spread by altering the spike [...]
Protein nanoparticle vaccine with adjuvant improves immune response against influenza
A novel type of protein nanoparticle vaccine formulation containing influenza proteins and adjuvant to boost immune responses has provided complete protection against influenza viral challenges, according to a new study published by researchers in [...]
Decoding Long COVID: NIH Study Exposes the Inner Workings of Neurological Symptoms
A NIH study on twelve Long COVID patients found differences in immune cell profiles and autonomic dysfunction, contributing to the understanding of the condition and potentially leading to better diagnoses and new treatments. Twelve [...]
Pancreatic Cancer Vaccine Shows Promise in Small Trial
Using mRNA tailored to each patient’s tumor, the vaccine may have staved off the return of one of the deadliest forms of cancer in half of those who received it. Five years ago, a [...]