A recent article published in the journal ACS Nano discusses the application of Escherichia coli (E. coli)-mimetic nanomaterials for photolytic treatment of CT-26 or 4T1 tumors.
The authors synthesized the target nanomaterials using E. coli membrane proteins, gold nanorods (AuNRs), and adhesion proteins and named them E. coli-mimetic AuNRs (ECA). Further, the synthesized ECA showed a preventive effect in mice with CT-26 or 4T1 tumors under 808-nanometer laser irradiations.
Metastasis or reoccurrence are the key reasons behind the increase in cancer mortality, and treating recurrent or metastatic cancers is the end goal of cancer therapy. Combination therapy is an effective treatment for metastasis and reoccurrence. Further, combining nanomaterial-based phototherapy with chemotherapy has a scope in cancer treatment.
Nanomaterials in Cancer Therapy
Selective treatment of cancer cells through immunotherapy involves activation of immune cells, especially T lymphocytes aiding in eliminating cancer by inducing antigen-specific cytotoxicity. In this context, the dendritic cells (DCs) activated T cells selectively destroy antigen-expressing cells in cancer treatment.
Photothermal therapy (PTT) used for localized cancer treatment involves light energy conversion into thermal energy upon irradiation with a near-infrared (NIR) laser.
Nanomaterials can carry drugs to specific targets and aid in effective disease treatment. Further, they are used in combinational therapy to deliver more than one drug. Moreover, nanoparticles based on inorganic materials such as iron oxide nanoparticles, mesoporous silica nanoparticles, AuNRs, and quantum dots are effective PTT agents. AuNRs are efficient for photothermal conversion and surface functionalization and have good biocompatibility. However, cetyltrimethylammonium bromide (CTAB) on their surface makes them highly toxic, and surface modification of AuNRs helps reduce their toxicity.
ECA in Cancer Treatment
In the present study, the authors optimized the sonication and temperature conditions to synthesize ECA. Under NIR irradiation, while the AuNR in ECA had a phototherapeutic effect, the anticancer immunity was induced by the adhesion and surface proteins of ECA. Further, the authors used the synthesized ECA to treat primary tumors and secondary metastatic cancer in mice. The results revealed that the NIR laser light at 808 nanometers raised the temperature in ECA-treated tumor cells and induced apoptotic or necrotic cell death, exhibiting a therapeutic effect on CT-26 and 4T1 tumors in mice.
ClearColi lysate, fimbrin D-mannose-specific adhesin (FimH), and NIR laser irradiation activated immune cells, including T cells and DCs in tumor-draining lymph nodes (tdLNs). Finally, the mice transplanted with CT-26 or 4T1 tumors were cured of the primary tumor and blocked secondary lung metastasis on treatment with ECA.
ECA Characterization and Evaluation of its Therapeutic Potential
The morphology of ECA was analyzed by employing transmission electron microscopy (TEM). The resulting images showed a liposomal corona on the surface of AuNR on the peripheral side of liposome-coated AuNR (LCA) and ECA. The dynamic light scattering (DLS) studies revealed that the hydrodynamic sizes of LCA and ECA were 93.72 ± 2.7 and 116.8 ± 6.5 nanometers, respectively. Further, LCA and ECA showed a negative zeta potential of −4.6 and −12.7 millivolts.
The analysis of ECA using Fourier-transform infrared (FT-IR) spectra revealed characteristic peaks of phospholipids at 1735-centimeter inverse that corresponds to the carbonyl group, 1230-centimeter inverse to metaphosphate ion (PO2−), 1075-centimeter inverse to ether linkage (C-O-O) and peaks at 1646, and 1394-centimeter inverse that corresponds to amide bond. This data confirmed ECA modification with phospholipids, ClearColi lysate, and FimH on the surface of AuNR.
The studies of the photothermal effect of AuNR, LCA, and ECA revealed that the NIR irradiation on these nanomaterials induced a temperature rise and stimulated apoptotic/necrotic cell death. However, there was no temperature rise or apoptotic/necrotic cell death without laser irradiation, thus confirming the application of AuNR, LCA, and ECA as photothermal materials for tumor treatment.
Further, injecting Bagg Albino (BALB/c) mouse with PBS, liposome, FimH, liposome + FimH, AuNR, LCA, and ECA and irradiating with NIR laser of 808 nanometers showed a temperature rise at the tumor sites of AuNR, LCA, and ECA. However, the tumors treated with PBS, liposome, FimH, liposome + FimH had no response. Twenty days after treatment, the mice did not show tumor growth, reoccurrence, liver toxicity, or alanine aminotransferase (ALT) levels elevation in serum. This confirms the potential of AuNR, LCA, and ECA as PTT agents against tumors.
Later, the authors observed that the mice treated with AuNR and LCA PTT agents as the first tumor treatment showed partial resistance to the second cancer challenge without antigen-specific T-cell activities. However, the ECA PTT treatment stimulated antigen production and immune activation to promote antigen-specific immune activity, thus protecting against lung metastatic cancer (second challenge) in mice.
Conclusion
The authors of this study realized the goal of treating cancer metastasis or recurrence with a novel ECA nanomaterial. The synthesized ECA upon NIR laser irradiation-induced immune cell activation in the tumor-draining lymph nodes. Further ECA showed a therapeutic effect against CT-26 colonic epithelial cell carcinoma and 4T1 orthotopic breast cancer.
Thus, the results show the dual functionality of ECA nanomaterials as PTT for primary cancer treatment and immunotherapy against recurrence and metastasis. The authors believe that ECA will be used to block metastasis and treat primary cancers in humans in the future.

News
Emission of Fe- and Ti-Containing Nanoparticles from Coal-Fired Power Plants
In an article published in the journal Science of the Total Environment, researchers have highlighted the significance and potential risks associated with the release of nanoparticles from coal-fired power plants. Applying the single-particle inductively coupled plasma mass [...]
Covalent Organic Framework Nanofluidic Hybrid Membrane for Osmotic Energy Generation
A paper recently published in the journal ACS Applied Energy Materials demonstrated the feasibility of using a covalent organic framework (COF)-based nanofluidic hybrid membranes (NHMs) to attain enhanced interfacial ion transport for the generation of osmotic [...]
Degradable Nanocomposite Removes Antibiotics from Contaminated Water
The excess fluoroquinolones (FQs) discharged into the aquatic environment due to human activities must be removed cost-effectively. In an article published in the Journal of Cleaner Production, the authors fabricated an environment-friendly dealkaline lignin-grafted Fe3O4 nanoparticles [...]
Light-controlled reactions at the nanoscale
Controlling strong electromagnetic fields on nanoparticles is the key to triggering targeted molecular reactions on their surfaces. Such control over strong fields is achieved via laser light. Although laser-induced formation and breaking of molecular [...]
Bright Future for Nanophotonic Chips with Topological Rainbow Device
A paper recently published in the journal Nature Communications demonstrated an effective method to realize on-chip nanophotonic topological rainbow devices using the concept of synthetic dimensions. Importance of Synthetic Dimensions for the Construction of Topological Nanophotonics [...]
Green Approach to Silver Nanoparticle Fabrication with Citrus Fruits
In a study available in the journal Materials Today: Proceedings, silver nanoparticles (Ag NPs) were fabricated using a green method using Citrus X sinensis. Methylthioninium Chloride (MB) Dyes Threatening the Environment Dye and sewage drainage into [...]
Coronavirus ‘ghosts’ found lingering in the gut
Scientists are studying whether long COVID could be linked to viral fragments found in the body months after initial infection. In the chaos of the first months of the coronavirus pandemic, oncologist and geneticist [...]
Experts perplexed over number of people getting long COVID
Public health experts are divided over how many people are getting long COVID-19, a potentially debilitating condition that comes after a patient has recovered from the coronavirus. Ill effects from the condition can include [...]
Four strange COVID symptoms you might not have heard about
Well over two years into the pandemic, hundreds of thousands of COVID cases continue to be recorded around the world every day. With the rise of new variants, the symptoms of COVID have also evolved. Initially, [...]
A new method for exploring the nano-world
Nanoparticles are everywhere. They are in our body as protein aggregates, lipid vesicles, or viruses. They are in our drinking water in the form of impurities. They are in the air we breath as [...]
Breast Cancer Drug Resistance Tackled By Polymer Nanoparticles
Drug resistance is a common phenomenon, with drugs becoming less and less effective as their usage increases. To address this issue, a novel technique employing conjugated polymer-based nanoparticles is presented in the study published [...]
New imaging method makes microrobots visible in the body
Microrobots have the potential to revolutionize medicine. Researchers at the Max Planck ETH Centre for Learning Systems have now developed an imaging technique that for the first time recognises cell-sized microrobots individually and at [...]
Multifunctional Nanocrystals Enhance Cancer Cell Killing Therapies
Scientists have recently developed multifunctional hexagonal NaxWO3 nanocrystals that can serve as microwave sensitizers to kill cancer cells as well as improve the overall chemodynamic therapy (CDT). This study is available as a pre-proof in Chemical Engineering Journal. [...]
Biotech, nanomedicine, and AI combine for health breakthrough predicted by Apple genius Steve Jobs
Apple’s visionary founder, the late Steve Jobs once said, “the biggest innovations of the 21st century will be at the intersection of biology and technology”. And that prediction is coming true in the drug [...]
Making chemical separation more eco-friendly with nanotechnology
Chemical separation processes are essential in the manufacturing of many products from gasoline to whiskey. Such processes are energetically costly, accounting for approximately 10–15 percent of global energy consumption. In particular, the use of [...]
Dual Function SARS-CoV-2 Sensor for Point of Contact Testing
Scientists have recently developed electrochemical immunosensors based on graphene oxide−gold (GO−Au) nanocomposites. These immunosensors are highly sensitive with dual function, i.e., they can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen and antibody. [...]