Today’s societies critically depend on electronic systems. Past spectacular cyber-attacks have clearly demonstrated the vulnerability of existing systems and the need to prevent such attacks in the future. The majority of available cyber-defenses concentrate on protecting the software part of electronic systems or their communication interfaces.
However, manufacturing technology advancements and the increasing hardware complexity provide a large number of challenges so that the focus of attackers has shifted towards the hardware level. We saw already evidence for powerful and successful hardware-level attacks, including Rowhammer, Meltdown and Spectre.
These attacks happened on products built using state-of-the-art microelectronic technology, however, we are facing completely new security challenges due to the ongoing transition to radically new types of nanoelectronic devices, such as memristors, spintronics, or carbon nanotubes and graphene based transistors.
The use of such emerging nanotechnologies is inevitable to address the key challenges related to energy efficiency, computing power and performance. Therefore, the entire industry, are switching to emerging nano-electronics alongside scaled CMOS technologies in heterogeneous integrated systems.
These technologies come with new properties and also facilitate the development of radically different computer architectures. The new technologies and architectures provide new opportunities for achieving security targets, but also raise questions about their vulnerabilities to new types of hardware attacks.

 

Image Credit:  University of Stuttgart

Read more at nanowerk.com

News This Week

NanoApps Athletics Inc. Established

Frank Boehm (NanoApps Medical Inc. founder) and Amanda Scott (NA CEO) join NanoApps Athletics Inc. NanoApps Athletics Inc proposes a unique synergistic biochemical/nanomedical strategy for the expedited repair and healing of Achilles tendon micro [...]

Light in a new light

In a paper published in Nature's NPJ Quantum Information ("Multiphoton quantum-state engineering using conditional measurements"), Omar Magaña-Loaiza, assistant professor in the Louisiana State University (LSU) Department of Physics & Astronomy, and his team of [...]

Brain-computer interfaces without the mess

It sounds like science fiction: controlling electronic devices with brain waves. But researchers have developed a new type of electroencephalogram (EEG) electrode that can do just that, without the sticky gel required for conventional [...]