From the moment you turn off your morning alarm, to the time you hit the pillow, your life is full of surfaces. Swiping through your phone, opening doors, putting in your PIN – there are many you don’t think twice about touching.
But SARS-CoV-2, the virus that causes COVID-19, will likely change the way we all think about, and interact with, surfaces forever. Our peer-reviewed study published in Virology Journal reveals new information about the virus and how it behaves on surfaces.
Understanding SARS-CoV-2 on surfaces
From analysing sewage to testing face masks, our research has been contributing to the global battle against COVID-19.
At this stage of the pandemic, researchers do not fully understand the role contaminated surfaces play in the transmission of SARS-CoV-2. To improve our understanding of how this new virus behaves, our researchers studied the survival rates of infectious SARS-CoV-2, dried in an artificial mucous solution, on six common surfaces.
We conducted the experiment at three different temperatures, 200C, 300C and 400C, with the relative humidity kept at 50 per cent. The surfaces used in the study were stainless steel, glass, vinyl, paper and polymer banknotes, and cotton cloth. These are examples of high contact surface areas such as glass on touchscreens and stainless steel doorknobs.
A droplet of fluid containing the virus at concentrations similar to levels observed in infected patients was dried on multiple small test surfaces and left for up to 28 days. At various time periods, the virus was recovered and placed in tissue culture cells to observe if any infectious virus remained.
Impact of temperature on virus
At 20°C, the virus was extremely robust. We were able to recover infectious material after 28 days from the smooth (non-porous) surfaces. These are stainless steel, glass, vinyl and paper and polymer banknotes.
The length of time infectious virus was able to survive on the porous material (cotton cloth) was much shorter. On cloth, we were unable to detect any viable virus past 14 days.
At 30°C infectious virus did not survive beyond seven days on stainless steel, money (polymer banknotes) and glass. However, on vinyl and cotton cloth, infectious material was not detectable beyond three days.
At 40°C virus was inactivated much faster. Infectious SARS-CoV-2 was detectable for less than 16 hours for cotton cloth. While on glass, paper and polymer notes, and stainless steel it was detectable for up to 24 hours, and 48 hours for vinyl.
Infographic explaining COVID-19 on surfaces.
How long SARS-CoV-2 survived on five different surfaces at three temperatures, 20°C, 30°C and 40°C.
How many particles can cause an infection?
It generally takes more than one virus particle to infect a person and make them sick. We call the number of virus particles that can cause infection the “infectious dose”. This dosage differs between different viruses and is usually quite large.
Researchers do not yet know the infectious dose of SARS-CoV-2. But, from our knowledge of related viruses, we estimate it is around 300 particles. If the virus was placed (on smooth surfaces) at standard mucus concentrations of an infected person, enough virus would easily survive for two weeks to be able to infect another person.
Further research on this topic is necessary. However, our findings indicate the 28-day sample would not contain enough viable virus to infect a person.
Whether virus particles on a surface can infect someone is dependent on several conditions. Outside of the body, SARS-CoV-2 virus particles gradually become inactive over time. The time it takes for viruses to naturally inactivate depends on many factors. The makeup of the virus itself, the type of surface it is on and whether the virus is liquid or dried can impact the time it remains viable. Environmental conditions such as temperature, exposure to sunlight and humidity also play a part.
Image Credit: Australian Centre for Disease Preparedness (ACDP)
Post by Amanda Scott, NA CEO. Follow her on twitter @tantriclens
Thanks to Heinz V. Hoenen. Follow him on twitter: @HeinzVHoenen

News
A nanoparticle and inhibitor trigger the immune system, outsmarting brain cancer
Scientists at the University of Michigan Rogel Cancer Center were optimistic when they identified a small molecule that blocked a key pathway in brain tumors. But there was a problem: How to get the [...]
Novel Nanoparticle Vaccine Induces Immune Response Against SARS-CoV-2
According to scientists at Georgia State University’s Institute for Biomedical Sciences, a nanoparticle vaccine that incorporates two proteins that stimulate immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that prompted the [...]
Study explores if prior infection with SARS-CoV-2 increased sensitivity to a mitochondrial toxin known to induce parkinsonism
Post-viral infection sequelae have included neurological syndromes. Among these is the association of parkinsonian manifestations with a prior history of viral infection, as far back as the Spanish flu pandemic of 1918, when encephalitis [...]
How are doctors unravelling the mystery of long COVID?
They call them long-haulers – people still suffering symptoms long after a bout of COVID. But what is the condition, exactly? Doctors expect the answer will change [...]
Sidekick microbubbles carry anti-cancer drugs, damage tumor vessels
Microbubbles can assist with localized drug delivery in a patient's body by popping at a target site to create enhanced permeability of tumor blood vessels. By temporarily increasing the porosity of the blood vessels, [...]
Possible discovery of mechanism behind mysterious COVID-19 symptoms
In patients with serious and long-term COVID-19, disturbed blood coagulation has often been observed. Now, researchers at Linköping University (LiU), Sweden, have discovered that the body's immune system can affect the spike protein on [...]
Ultrathin fuel cell uses the body’s own sugar to generate electricity
Glucose is the sugar we absorb from the foods we eat. It is the fuel that powers every cell in our bodies. Could glucose also power tomorrow’s medical implants? Engineers at MIT and the [...]
How can Nanotechnology be Used to Reverse Skin Aging?
Although skin aging has not been related to many health complications, it has aesthetic issues. Some of the common symptoms of skin aging are changes in the skin texture (rough, dry, and itchy), discoloration, [...]
Emission of Fe- and Ti-Containing Nanoparticles from Coal-Fired Power Plants
In an article published in the journal Science of the Total Environment, researchers have highlighted the significance and potential risks associated with the release of nanoparticles from coal-fired power plants. Applying the single-particle inductively coupled plasma mass [...]
Covalent Organic Framework Nanofluidic Hybrid Membrane for Osmotic Energy Generation
A paper recently published in the journal ACS Applied Energy Materials demonstrated the feasibility of using a covalent organic framework (COF)-based nanofluidic hybrid membranes (NHMs) to attain enhanced interfacial ion transport for the generation of osmotic [...]
Degradable Nanocomposite Removes Antibiotics from Contaminated Water
The excess fluoroquinolones (FQs) discharged into the aquatic environment due to human activities must be removed cost-effectively. In an article published in the Journal of Cleaner Production, the authors fabricated an environment-friendly dealkaline lignin-grafted Fe3O4 nanoparticles [...]
Light-controlled reactions at the nanoscale
Controlling strong electromagnetic fields on nanoparticles is the key to triggering targeted molecular reactions on their surfaces. Such control over strong fields is achieved via laser light. Although laser-induced formation and breaking of molecular [...]
Bright Future for Nanophotonic Chips with Topological Rainbow Device
A paper recently published in the journal Nature Communications demonstrated an effective method to realize on-chip nanophotonic topological rainbow devices using the concept of synthetic dimensions. Importance of Synthetic Dimensions for the Construction of Topological Nanophotonics [...]
Green Approach to Silver Nanoparticle Fabrication with Citrus Fruits
In a study available in the journal Materials Today: Proceedings, silver nanoparticles (Ag NPs) were fabricated using a green method using Citrus X sinensis. Methylthioninium Chloride (MB) Dyes Threatening the Environment Dye and sewage drainage into [...]
Coronavirus ‘ghosts’ found lingering in the gut
Scientists are studying whether long COVID could be linked to viral fragments found in the body months after initial infection. In the chaos of the first months of the coronavirus pandemic, oncologist and geneticist [...]
Experts perplexed over number of people getting long COVID
Public health experts are divided over how many people are getting long COVID-19, a potentially debilitating condition that comes after a patient has recovered from the coronavirus. Ill effects from the condition can include [...]