Cells and the machinery they encase are soft matter – shape-shifting multicomponent systems with an overwhelming richness of forms. But, these squishy packages are hard targets for potential therapeutic and diagnostic applications that exploit nanomaterials, from quantum dots that light up specific tissues to nanocages carrying drug payloads.
The problem, according to a team of 12 experts from five countries, stems from a “mismatch” between the structural complexity that nature selected over billions of years of evolution and the minimalist designs of synthetic nanomaterials, optimized for lab conditions.
Advances in nanotechnology have made it possible to control the size, shape, composition, elasticity and chemical properties of laboratory-made nanomaterials. Yet many of these materials do not to function as expected in the body. In a recent issue of Biointerphases, from AIP Publishing, the team homes in on biomembranes – the gatekeeping bilipid-layers and proteins surrounding cells. They explore the barriers a synthetic nanomaterial must breach to enter a cell and achieve its intended purpose.

Image Credit: From the article
News This Week
Silver nanoparticles show promise in fighting antibiotic-resistant bacteria
In a new study, scientists with the University of Florida have found that a combination of silver nanoparticles and antibiotics is effective against antibiotic-resistant bacteria. The researchers hope to turn this discovery into viable [...]
Combating severe cancer with a new drug delivery system
Peritoneal cancer is difficult to treat and has a poor survival prognosis. But a new and effective nanomedicine delivery system is offering some hope. The company is called NaDeNo and is well underway with [...]
New Research Shows How Ketamine Acts As “Switch” in the Brain
According to a new study by researchers at Penn Medicine, ketamine, which is well-known as an anesthetic and is becoming increasingly popular as an antidepressant, dramatically reorganizes activity in the brain, almost as if [...]
Supercharged T Cells: A New Way To Kill Pancreatic Cancer With Minimal Side Effects
A new immunotherapy releases cancer-killing cytokines only within the tumor. Researchers at the University of California San Francisco (UCSF) have developed a new T cell-based immunotherapy that selectively targets cancer cells, producing a powerful anti-cancer cytokine [...]
AI has designed bacteria-killing proteins from scratch – and they work
An AI was tasked with creating proteins with anti-microbial properties. Researchers then created a subset of the proteins and found some did the job. An AI has designed anti-microbial proteins that were then tested [...]
Using nanoparticles, researchers can identify and deliver synergistic combinations of cancer drugs
Treating cancer with combinations of drugs can be more effective than using a single drug. However, figuring out the optimal combination of drugs, and making sure that all of the drugs reach the right [...]
Humanity May Reach Singularity Within Just 7 Years, Trend Shows
By one unique metric, we could approach technological singularity by the end of this decade, if not sooner. A translation company developed a metric, Time to Edit (TTE), to calculate the time it takes for professional [...]
HYPER (Highly Interactive Particle Relics) – A New Model for Dark Matter
Phase transition in early universe changes strength of interaction between dark and normal matter. Dark matter remains one of the greatest mysteries of modern physics. It is clear that it must exist, because without [...]
Leave A Comment