Computer Model Determines Ideal Conditions to Develop Nanodiamonds

Nanodiamonds – the tiny crystalline carbon – have fascinating chemical and surface properties and hold promising applications in quantum computing, optoelectronics, and medicine. These materials measure hundreds of thousands of times smaller than a single grain of sand.

In order to counterfeit these nanoscopic gemstones, organic explosive molecules are exposed to intense detonations in a controlled environment.
However, these explosive forces do not make it easy to analyze the formation of nanodiamonds, even within the laboratory conditions.
In an effort to resolve this obstacle, two French researchers came up with a novel procedure, as well as a computer model, that is capable of simulating the highly unpredictable conditions of explosions on incredibly short time scales.

The researchers have reported their work in AIP Publishing’s The Journal of Chemical Physics.

Understanding the processes that form nanodiamonds is essential to control or even tune their properties, making them much better suited for specific purposes.”
Xavier Bidault, Co-author

A type of simulation called Reactive Molecular Dynamics was used by Bidault and his co-author Nicolas Pineau.

This simulation replicates the time evolution of systems that are complex and chemically reactive down to the atomic level.


Image Credit:    Shutterstock

News This Week

Can man ever build a mind?

The idea that we might create machines more intelligent than ourselves is not new. Myths and folk stories abound with creations such as the bronze automaton Talos, who patrolled the island of Crete in [...]

Cold atoms offer a glimpse of flat physics

These days, movies and video games render increasingly realistic 3-D images on 2-D screens, giving viewers the illusion of gazing into another world. For many physicists, though, keeping things flat is far more interesting. [...]

Viruses as Controllable Nanodevices

Viruses are Nature’s delivery vehicles. Millions of years of evolution have molded them into remarkable machines capable of performing a monumental task vital to their survival: the delivery of genetic material into other organisms. [...]

Updated – NanoApps Medical Inc. Near-Term Projects

NanoApps Medical is investigating the possibility that superparamagnetic nanoparticles (SPIONs) (Figure 1) and other classes of nanoparticles (e.g., gold coated nanoshells) (Figure 2) might have the capacity to target cancerous tumors, metastasizing cancer cells, [...]


Leave A Comment