Nanodiamonds – the tiny crystalline carbon – have fascinating chemical and surface properties and hold promising applications in quantum computing, optoelectronics, and medicine. These materials measure hundreds of thousands of times smaller than a single grain of sand.

In order to counterfeit these nanoscopic gemstones, organic explosive molecules are exposed to intense detonations in a controlled environment.
However, these explosive forces do not make it easy to analyze the formation of nanodiamonds, even within the laboratory conditions.
In an effort to resolve this obstacle, two French researchers came up with a novel procedure, as well as a computer model, that is capable of simulating the highly unpredictable conditions of explosions on incredibly short time scales.

The researchers have reported their work in AIP Publishing’s The Journal of Chemical Physics.

Understanding the processes that form nanodiamonds is essential to control or even tune their properties, making them much better suited for specific purposes.”
Xavier Bidault, Co-author

A type of simulation called Reactive Molecular Dynamics was used by Bidault and his co-author Nicolas Pineau.

This simulation replicates the time evolution of systems that are complex and chemically reactive down to the atomic level.

Read more at azonano.com

Image Credit:    Shutterstock

News This Week

A ‘cancer lab’ on chip

Finding out you have cancer is bad enough, but to then have to go to hospital for a painful and invasive biopsy to try to identify the exact type of tumor can be deeply [...]

Nanoparticles Heal Spinal Cord Injuries

The zealous immune response to injuries is known to cause paralyzing damage in spinal cord injury (SCI). Engineers have now created unique nanoparticles that redirect immune cells away from the spinal cord, promoting regeneration [...]