Nanodiamonds – the tiny crystalline carbon – have fascinating chemical and surface properties and hold promising applications in quantum computing, optoelectronics, and medicine. These materials measure hundreds of thousands of times smaller than a single grain of sand.

In order to counterfeit these nanoscopic gemstones, organic explosive molecules are exposed to intense detonations in a controlled environment.
However, these explosive forces do not make it easy to analyze the formation of nanodiamonds, even within the laboratory conditions.
In an effort to resolve this obstacle, two French researchers came up with a novel procedure, as well as a computer model, that is capable of simulating the highly unpredictable conditions of explosions on incredibly short time scales.

The researchers have reported their work in AIP Publishing’s The Journal of Chemical Physics.

Understanding the processes that form nanodiamonds is essential to control or even tune their properties, making them much better suited for specific purposes.”
Xavier Bidault, Co-author

A type of simulation called Reactive Molecular Dynamics was used by Bidault and his co-author Nicolas Pineau.

This simulation replicates the time evolution of systems that are complex and chemically reactive down to the atomic level.

Image Credit:    Shutterstock

News This Week

Aging Spreads Through the Bloodstream

Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]

Nanomaterials in Ophthalmology: A Review

Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]