Viruses lead a rather repetitive existence. They enter a cell, hijack its machinery to turn it into a viral copy machine, and those copies head on to other cells armed with instructions to do the same. So it goes, over and over again. But somewhat often, amidst this repeated copy-pasting, things get mixed up. Mutations arise in the copies. Sometimes, a mutation means an amino acid doesn’t get made and a vital protein doesn’t fold—so into the dustbin of evolutionary history that viral version goes. Sometimes the mutation does nothing at all, because different sequences that encode the same proteins make up for the error. But every once in a while, mutations go perfectly right. The changes don’t affect the virus’s ability to exist; instead, they produce a helpful change, like making the virus unrecognizable to a person’s immune defenses. When that allows the virus to evade antibodies generated from past infections or from a vaccine, that mutant variant of the virus is said to have “escaped.”
Scientists are always on the lookout for signs of potential escape. That’s true for SARS-CoV-2, as new strains emerge and scientists investigate what genetic changes could mean for a long-lasting vaccine. (So far, things are looking okay.) It’s also what confounds researchers studying influenza and HIV, which routinely evade our immune defenses. So in an effort to see what’s possibly to come, researchers create hypothetical mutants in the lab and see if they can evade antibodies taken from recent patients or vaccine recipients. But the genetic code offers too many possibilities to test every evolutionary branch the virus might take over time. It’s a matter of keeping up.
Last winter, Brian Hie, a computational biologist at MIT and a fan of the lyric poetry of John Donne, was thinking about this problem when he alighted upon an analogy: What if we thought of viral sequences the way we think of written language? Every viral sequence has a sort of grammar, he reasoned—a set of rules it needs to follow in order to be that particular virus. When mutations violate that grammar, the virus reaches an evolutionary dead end. In virology terms, it lacks “fitness.” Also like language, from the immune system’s perspective, the sequence could also be said to have a kind of semantics. There are some sequences the immune system can interpret—and thus stop the virus with antibodies and other defenses—and some that it can’t. So a viral escape could be seen as a change that preserves the sequence’s grammar but changes its meaning.
Image Credit: Elena Lacey
Post by Amanda Scott, NA CEO. Follow her on twitter @tantriclens
Thanks to Heinz V. Hoenen. Follow him on twitter: @HeinzVHoenen

News
Nasal Vaccines: Stopping the COVID-19 Virus Before It Reaches the Lungs
The Pfizer-BioNTech and Moderna mRNA vaccines have played a large role in preventing deaths and severe infections from COVID-19. But researchers are still in the process of developing alternative approaches to vaccines to improve [...]
NASA Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field – with video
NASA is actively monitoring a strange anomaly in Earth's magnetic field: a giant region of lower magnetic intensity in the skies above the planet, stretching out between South America and southwest Africa. This vast, developing [...]
New, Better Models Show How Infectious Diseases Like COVID-19 Spread
Infectious diseases such as COVID-19 can spread rapidly across the globe. Models that can predict how such diseases spread will strengthen national surveillance systems and improve public health decision-making. The COVID-19 pandemic has emphasized the [...]
Human Antibodies Discovered That Can Block Multiple Coronaviruses Including COVID-19
Results from a Scripps Research and UNC team pave the way for a vaccine and therapeutic antibodies that could be stockpiled to fight future coronavirus pandemics. A team of scientists from Scripps Research and [...]
Nanotechnology could be used to treat lymphedema
The human body is made up of thousands of tiny lymphatic vessels that ferry white blood cells and proteins around the body, like a superhighway of the immune system. It's remarkably efficient, but if [...]
DNA Nanotechnology Tools – From Design to Applications
Suite of DNA nanotechnology devices engineered to overcome specific bottlenecks in the development of new therapies, diagnostics, and understanding of molecular structures. DNA nanostructures with their potential for cell and tissue permeability, biocompatibility, and [...]
Regenerating bone with deer antler stem cells
Scientists from a collection of Chinese research institutions collaborated on a study of organ regeneration in mammals, finding deer antler blastema progenitor cells are a possible source of conserved regeneration cells in higher vertebrates. [...]
AI Takes On Cancer: Analysis of Mutations Could Lead to Improved Therapy
Cancer is a complex and diverse disease, and its range of associated mutations is vast. The combination of these genomic changes in an individual is referred to as their “mutational landscape.” These landscapes vary [...]
Exposing tumours to bacteria converts immune cells to cancer killers
New research on inflammation could lead to better treatments to improve outcomes for people with advanced or previously untreatable cancers. Introducing bacteria to a tumour’s microenvironment creates a state of acute inflammation that triggers [...]
Smart nanotechnology for more accurate delivery of insulin
More efficient and longer lasting glucose-responsive insulin that eliminates the need for people with type 1 diabetes to measure their glucose levels could be a step closer thanks to a Monash University-led project. Published [...]
Efficiently Harvesting Rare Earth Elements From Wastewater Using Exotic Bacteria
The novel strains of cyanobacteria exhibit a fast and efficient “biosorption” of rare earth elements, making recycling possible. Rare earth elements (REEs) are a set of 17 metallic elements that possess similar chemical properties. [...]
Resisting Treatment: Cancer Cells Shrink or Super-Size To Survive
A new approach to image analysis has uncovered how cancer cells manipulate their size as a means of resisting treatment. Researchers have discovered that cancer cells are capable of either shrinking or super-size themselves [...]
New Research Explains Why Children Avoid Severe COVID-19 Symptoms
According to new research, children exhibit a robust initial immune response to the coronavirus, however, they are unable to transfer this response to long-lasting memory T cells like adults do. Researchers led by scientists [...]
Scientists Unravel Protein Map of Mitochondria
A new study sheds light on the organization of proteins within mitochondria. Mitochondria, the “powerhouses” of cells, play a crucial role in the energy production of organisms and are involved in various metabolic and [...]
Mystifying Trapping Phenomenon: A Surprising Way To Catch a Microparticle
New insights could advance microfluidics and drug delivery systems. New study finds obstacles can trap rolling microparticles in fluid Through simulations and experiments, physicists attribute the trapping effect to stagnant pockets of fluid, created [...]
New Alzheimer’s Treatment: Blocking T Cells To Prevent Neurodegeneration
Findings, in mice, open up drug development possibilities for brain diseases linked to tau protein. Nearly two dozen experimental therapies targeting the immune system are in clinical trials for Alzheimer’s disease, a reflection of the growing [...]