H5N1 influenza is evolving rapidly, weakening the effectiveness of existing antibodies and increasing its potential threat to humans.
Scientists at UNC Charlotte and MIT used high-performance computational modeling to analyze thousands of viral protein-antibody interactions, revealing a decline in immune response effectiveness. Their research suggests that H5N1 mutations may soon enable human-to-human transmission, raising pandemic concerns. The virus has already spread among wild birds, poultry, cattle, and even farmworkers, emphasizing the need for swift vaccine development.
H5N1’s Rapid Evolution Poses a Growing Threat
A research team at the University of North Carolina at Charlotte has used advanced computational modeling to study how the H5N1 bird flu virus interacts with the immune system. Their findings show that the virus is evolving in ways that help it evade immune defenses, whether from past infection or vaccination, in mammals.
Published on March 17 in eBioMedicine (a journal within The Lancet family), the study highlights urgent concerns. As avian influenza continues to spread globally, it poses not only a serious risk to agriculture but also an increasing threat to human health.
Worsening Antibody Affinity Raises Concerns
The researchers found a clear trend: antibodies are becoming less effective against newer strains of H5N1. This “worsening antibody affinity” suggests that future versions of the virus may be even more difficult for the immune system to recognize and fight, raising the risk of transmission to and among humans.
The study’s lead author is Colby T. Ford, Ph.D., a visiting scholar in data science at UNC Charlotte’s CIPHER center and founder of Tuple, LLC, a biotechnology consulting firm based in Charlotte.
Crucially, Ford explains, this rapid adaptation means that “if one makes an H5N1 vaccine with a previous vaccine candidate virus, the vaccine will have less efficacy, based on our measurements of how much the virus has evolved in recent years” As such, the team’s research approach provides guidance for keeping pace with a rapidly adapting viral threat.
The team from UNC Charlotte’s Department of Bioinformatics and Genomics includes students Shirish Yasa, Khaled Obeid, and Sayal Guirales-Medrano, led by Bioinformatics Assistant Professor Richard Allen White III, Ph.D., and CIPHER Co-Director Daniel Janies, Ph.D. who is the Carol Grotnes Belk Distinguished Professor of Bioinformatics and Genomics. The UNC Charlotte team collaborated with researchers from the Massachusetts Institute of Technology: Rafael Jaimes III, Ph.D., and Phillip J. Tomezsko, Ph.D.
Antigenic Drift and Increased Zoonotic Risk
By examining the virus’ rampant host-shifting and recent mutations comprehensively, researchers find “the continuous transmission of H5N1 from birds to mammals and the increase in strains with immuno-evasive HA in mammals sampled over time suggest that antigenic drift is a source of zoonotic risk.”
In the paper, “Large-scale computational modeling of H5 influenza variants against HA1-neutralising antibodies,” the UNC Charlotte research team shares their results from analysis of 1,804 viral protein-host antibody comparisons. The experiments consisted of current hemagglutinin domain 1 viral proteins computationally bound in physics models to neutralizing antibodies obtained from infected hosts and vaccine recipients from 1996 to 2018.
Computational Modeling Reveals Alarming Trends
Using high-performance computational modeling, CIPHER researchers documented “a trend of weakening binding affinity of a wide variety of existing antibodies, collected from vaccinated and or infected hosts, against H5 viral isolates over time.”
Due to the public health importance, the findings were available via preprint publication in July 2024 prior to successful peer review. Due to the computational tools they had assembled during the SARS-CoV-2 pandemic, the team was able to complete this work on H5N1 just three months after the first reported cow-to-human transmission of H5N1, which was reported in a farmworker in Texas.
In assessing the possible pandemic risk spurred by H5 bird flu spread and mutation, global researchers agree that “the avian virus (remains) high on lists of potential pandemic agents,” as reported in Science in December 2024.
H5N1 Cases Surge in Mammals and Poultry
As of this writing, no human-to-human transmission has been reported. However, cattle in at least 17 states have tested positive for H5N1 in addition to millions of cases among wild birds, small mammals, commercial chickens, and other flocks. Between January 2022 and March 2025, the Centers for Disease Control reported:
- 12,510 outbreaks among wild birds in the U.S.
- 51 jurisdictions with bird flu among wild birds.
- 166,417,923 poultry affected
- 70 human cases of H5N1, one fatal, in the U.S.
The H5N1 virus, according to the World Health Organization, has killed 466 people worldwide since January 2003.
Speed Crucial to Combat a Fast-Adapting Virus
Vaccines, many experts say, will likely be a crucial tool in controlling a bird flu pandemic, as mutations of viral lineages adapt to new mammal hosts.
In eBioMedicine, the research team from Charlotte writes that their findings “indicate that the virus has potential to move from epidemic to pandemic status in the near future.”
The study – along with other research that confirms worsening antibody binding over time alongside increased avian-to-mammalian transmission – indicates “there is an impending danger to human health for highly pathogenic strains of H5 influenza that can infect avian and mammalian livestock and jump to humans.”
Avian Influenza can already be considered a pandemic among wild and domesticated animals due to the virus’ pervasive spread across geography and species. Likewise, the spread of H5N1 from wild birds to chickens, dairy cattle, and farm workers illustrates the opportunism of infections across species.
Now, UNC Charlotte’s computational modeling results “specifically assert that the worsening trend of the antibody performance along with the already present animal pandemic is a cause for concern for an eventual human pandemic.”
Computational Modeling: A Key Tool for Preparedness
Further, the authors write that high-performance computing – which in this case included AI-based protein folding and physics-based simulations of viral protein-antibody interactions – provides rapid and reliable results to inform leaders in preparedness.
Janies, in a recent interview, explained the utility of computational modeling as a means of understanding viral mutation as well as predictive thinking concerning how a virus is evolving.
High-performance computational modeling, Janies said, is a pathway for “chipping away at multiple angles of biological variation at speed and scale” to “tune our intuition to the right approaches” for vaccine efficacy and infection control as viruses evolve.
Reference: “Large-scale computational modelling of H5 influenza variants against HA1-neutralising antibodies” by Colby T. Ford, Shirish Yasa, Khaled Obeid, Rafael Jaimes, Phillip J. Tomezsko, Sayal Guirales-Medrano, Richard Allen White and Daniel Janies, 17 March 2025, eBioMedicine.
DOI: 10.1016/j.ebiom.2025.105632
The protein modeling research on H5N1 viral lineages conducted at UNC Charlotte was funded by an Ignite grant from the UNC Charlotte Division of Research. Research used genetic data and metadata from GISAID, the Global Initiative on Sharing All Influenza Data, and the United States National Institutes of Health’s GenBank.

News
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]
Breakthrough Drug Restores Vision: Researchers Successfully Reverse Retinal Damage
Blocking the PROX1 protein allowed KAIST researchers to regenerate damaged retinas and restore vision in mice. Vision is one of the most important human senses, yet more than 300 million people around the world are at [...]
Differentiating cancerous and healthy cells through motion analysis
Researchers from Tokyo Metropolitan University have found that the motion of unlabeled cells can be used to tell whether they are cancerous or healthy. They observed malignant fibrosarcoma [...]
This Tiny Cellular Gate Could Be the Key to Curing Cancer – And Regrowing Hair
After more than five decades of mystery, scientists have finally unveiled the detailed structure and function of a long-theorized molecular machine in our mitochondria — the mitochondrial pyruvate carrier. This microscopic gatekeeper controls how [...]
Unlocking Vision’s Secrets: Researchers Reveal 3D Structure of Key Eye Protein
Researchers have uncovered the 3D structure of RBP3, a key protein in vision, revealing how it transports retinoids and fatty acids and how its dysfunction may lead to retinal diseases. Proteins play a critical [...]
5 Key Facts About Nanoplastics and How They Affect the Human Body
Nanoplastics are typically defined as plastic particles smaller than 1000 nanometers. These particles are increasingly being detected in human tissues: they can bypass biological barriers, accumulate in organs, and may influence health in ways [...]
Measles Is Back: Doctors Warn of Dangerous Surge Across the U.S.
Parents are encouraged to contact their pediatrician if their child has been exposed to measles or is showing symptoms. Pediatric infectious disease experts are emphasizing the critical importance of measles vaccination, as the highly [...]
AI at the Speed of Light: How Silicon Photonics Are Reinventing Hardware
A cutting-edge AI acceleration platform powered by light rather than electricity could revolutionize how AI is trained and deployed. Using photonic integrated circuits made from advanced III-V semiconductors, researchers have developed a system that vastly [...]
A Grain of Brain, 523 Million Synapses, Most Complicated Neuroscience Experiment Ever Attempted
A team of over 150 scientists has achieved what once seemed impossible: a complete wiring and activity map of a tiny section of a mammalian brain. This feat, part of the MICrONS Project, rivals [...]
The Secret “Radar” Bacteria Use To Outsmart Their Enemies
A chemical radar allows bacteria to sense and eliminate predators. Investigating how microorganisms communicate deepens our understanding of the complex ecological interactions that shape our environment is an area of key focus for the [...]