A team of researchers from the University of Cambridge has developed a chemical ‘camera’ using a molecular glue that allows chemical reactions to be observed in real-time. The device is made up of semiconductor nanocrystals, referred to as quantum dots, and gold nanoparticles held together with a molecular glue called cucurbituril, with potential applications for a wide range of sectors due to its ease of use.
The research was published in the journal Nature Nanotechnology, and shows that once added to water, these components self-assemble to produce a tool that allows monitoring of chemical reactions as they happen. As well as being a powerful device, it is stable and assembles in seconds.
Using the light within the semiconductor nanocrystals, the camera causes an electron transfer process to take place, enabling the researchers to use spectroscopy to observe chemical species directly. Previously, this ability had only been theorized.
What is the Nano Camera?
The nano camera is produced by combining semiconductor nanocrystals, gold nanoparticles, and cucurbituril to produce a stable, hybrid material that interacts with light and allows for real-time monitoring of chemical reactions. Professor Oren Scherman and his team at Cambridge’s Cavendish Laboratory and University College London developed this new method.
The semiconductor nanocrystals act as assembly modulators, controlling the assembly of the larger gold nanoparticles through a process which the team named ‘interfacial self-limiting aggregation’. Doing so enabled the production of a stable hybrid material that can interact with light, composing the nano camera.
In the laboratory, the team combined the individual components of their camera along with the molecule they wished to observe in water at room temperature. Past attempts to mix gold nanoparticles with cucurbituril led to items undergoing unlimited aggregation. However, the addition of semiconductor nanocrystals to the mixture produced a stable semiconductor-metal hybrid.
Key Findings
The researchers used spectroscopy to observe the chemical reactions once the components were mixed together. With the camera’s presence, they observed the formation of a radical species and products of the assembly, including a sigma violgen dimeric species, the product of two radicals forming a reversible carbon-carbon bond.
All the components used are readily available, and the camera can be formed without the need for extreme conditions.
We were surprised how powerful this new tool is, considering how straightforward it is to assemble.
Dr. Kamil Sokolowksi, first author
Individually, each component’s properties and uses are well known, but their unique combination makes this research an innovation.
For example, cucurbituril is a macrocyclic molecule made up of glycoluril monomers linked by a methylene bridge. It has a high affinity, highly selective, and its binding properties have led to use as a molecular ‘glue’ in the aggregation of nanoparticles in the past.
Both the aggregation of semiconductor nanocrystals and old nanoparticles are well documented; however, their use with cucurbituril to produce a nano camera is a novelty that could be pivotal in understanding other significant reactions in nanotechnology.
The Future of the Nano Camera in Nanotechnology Research
The nano camera has vast potential to be used in research and industry. It is inexpensive and straightforward to produce, meaning that it can replace more expensive, complicated methods which were not accessible in the past.
The type of complex hybrid produced can be formed in nature thanks to a self-limiting process, but this is not easy to replicate under lab conditions and is often a costly and lengthy process.
This innovative, simple process can be applied to many different combinations of metal nanoparticles and semiconductor nanocrystals that could not form hybrids in a laboratory previously, therefore providing new opportunities for imaging chemical reactions.
In a press release from the University of Cambridge, Dr. Sokolowski explained “This platform is a really big toolbox considering the number of metal and semiconductor building blocks that can be now coupled together using this chemistry– it opens up lots of new possibilities for imaging chemical reactions and sensing through taking snapshots of monitored chemical systems.”
One of the industries that may benefit from the use of the nano camera is renewable energies. The Scherman lab in Cambridge team is already working on developing a hybrid that will allow the observation of electron-transfer processes in artificial photosynthetic systems and photocatalysis.
Understanding and harnessing an artificial photosynthetic system would greatly advance the renewable energy sector. Current solar panels using photovoltaic cells are not efficient and are unable to store energy. Artificial photosynthesis could produce clean, storable fuels, and the ability to observe a chemical reaction in real-time could allow it to be replicated on a large scale.
The research team is also exploring how the process can be used to observe the formation of carbon-carbon bonds. Experiments exploring electrode interfaces for battery applications are also being conducted.
It is clear the knowledge that could be gleaned from observing real-time reactions could improve existing nanotechnology and produce new innovations, making this device an appealing addition to the future of the sector.

News
How can Nanotechnology be Used to Reverse Skin Aging?
Although skin aging has not been related to many health complications, it has aesthetic issues. Some of the common symptoms of skin aging are changes in the skin texture (rough, dry, and itchy), discoloration, [...]
Emission of Fe- and Ti-Containing Nanoparticles from Coal-Fired Power Plants
In an article published in the journal Science of the Total Environment, researchers have highlighted the significance and potential risks associated with the release of nanoparticles from coal-fired power plants. Applying the single-particle inductively coupled plasma mass [...]
Covalent Organic Framework Nanofluidic Hybrid Membrane for Osmotic Energy Generation
A paper recently published in the journal ACS Applied Energy Materials demonstrated the feasibility of using a covalent organic framework (COF)-based nanofluidic hybrid membranes (NHMs) to attain enhanced interfacial ion transport for the generation of osmotic [...]
Degradable Nanocomposite Removes Antibiotics from Contaminated Water
The excess fluoroquinolones (FQs) discharged into the aquatic environment due to human activities must be removed cost-effectively. In an article published in the Journal of Cleaner Production, the authors fabricated an environment-friendly dealkaline lignin-grafted Fe3O4 nanoparticles [...]
Light-controlled reactions at the nanoscale
Controlling strong electromagnetic fields on nanoparticles is the key to triggering targeted molecular reactions on their surfaces. Such control over strong fields is achieved via laser light. Although laser-induced formation and breaking of molecular [...]
Bright Future for Nanophotonic Chips with Topological Rainbow Device
A paper recently published in the journal Nature Communications demonstrated an effective method to realize on-chip nanophotonic topological rainbow devices using the concept of synthetic dimensions. Importance of Synthetic Dimensions for the Construction of Topological Nanophotonics [...]
Green Approach to Silver Nanoparticle Fabrication with Citrus Fruits
In a study available in the journal Materials Today: Proceedings, silver nanoparticles (Ag NPs) were fabricated using a green method using Citrus X sinensis. Methylthioninium Chloride (MB) Dyes Threatening the Environment Dye and sewage drainage into [...]
Coronavirus ‘ghosts’ found lingering in the gut
Scientists are studying whether long COVID could be linked to viral fragments found in the body months after initial infection. In the chaos of the first months of the coronavirus pandemic, oncologist and geneticist [...]
Experts perplexed over number of people getting long COVID
Public health experts are divided over how many people are getting long COVID-19, a potentially debilitating condition that comes after a patient has recovered from the coronavirus. Ill effects from the condition can include [...]
Four strange COVID symptoms you might not have heard about
Well over two years into the pandemic, hundreds of thousands of COVID cases continue to be recorded around the world every day. With the rise of new variants, the symptoms of COVID have also evolved. Initially, [...]
A new method for exploring the nano-world
Nanoparticles are everywhere. They are in our body as protein aggregates, lipid vesicles, or viruses. They are in our drinking water in the form of impurities. They are in the air we breath as [...]
Breast Cancer Drug Resistance Tackled By Polymer Nanoparticles
Drug resistance is a common phenomenon, with drugs becoming less and less effective as their usage increases. To address this issue, a novel technique employing conjugated polymer-based nanoparticles is presented in the study published [...]
New imaging method makes microrobots visible in the body
Microrobots have the potential to revolutionize medicine. Researchers at the Max Planck ETH Centre for Learning Systems have now developed an imaging technique that for the first time recognises cell-sized microrobots individually and at [...]
Multifunctional Nanocrystals Enhance Cancer Cell Killing Therapies
Scientists have recently developed multifunctional hexagonal NaxWO3 nanocrystals that can serve as microwave sensitizers to kill cancer cells as well as improve the overall chemodynamic therapy (CDT). This study is available as a pre-proof in Chemical Engineering Journal. [...]
Biotech, nanomedicine, and AI combine for health breakthrough predicted by Apple genius Steve Jobs
Apple’s visionary founder, the late Steve Jobs once said, “the biggest innovations of the 21st century will be at the intersection of biology and technology”. And that prediction is coming true in the drug [...]
Making chemical separation more eco-friendly with nanotechnology
Chemical separation processes are essential in the manufacturing of many products from gasoline to whiskey. Such processes are energetically costly, accounting for approximately 10–15 percent of global energy consumption. In particular, the use of [...]