A new mathematical model enhances the evaluation of AI identification risks, offering a scalable solution to balance technological benefits with privacy protection.
AI tools are increasingly used to track and monitor people both online and in person, but their effectiveness carries significant risks. To address this, computer scientists from the Oxford Internet Institute, Imperial College London, and UCLouvain have developed a new mathematical model designed to help people better understand the dangers of AI and support regulators in safeguarding privacy. Their findings were published in Nature Communications.
This model is the first to offer a solid scientific framework for evaluating identification methods, particularly when handling large-scale data. It can assess the accuracy of techniques like advertising codes and invisible trackers in identifying online users based on minimal information—such as time zones or browser settings—a process known as “browser fingerprinting.”
Lead author Dr. Luc Rocher, Senior Research Fellow, Oxford Internet Institute, part of the University of Oxford, said: “We see our method as a new approach to help assess the risk of re-identification in data release, but also to evaluate modern identification techniques in critical, high-risk environments. In places like hospitals, humanitarian aid delivery, or border control, the stakes are incredibly high, and the need for accurate, reliable identification is paramount.”
Leveraging Bayesian Statistics for Improved Accuracy
The method draws on the field of Bayesian statistics to learn how identifiable individuals are on a small scale, and extrapolate the accuracy of identification to larger populations up to 10x better than previous heuristics and rules of thumb. This gives the method unique power in assessing how different data identification techniques will perform at scale, in different applications and behavioral settings. This could help explain why some AI identification techniques perform highly accurately when tested in small case studies but then misidentify people in real-world conditions.
The findings are highly timely, given the challenges posed to anonymity and privacy caused by the rapid rise of AI-based identification techniques. For instance, AI tools are being trialed to automatically identify humans from their voice in online banking, their eyes in humanitarian aid delivery, or their face in law enforcement.
According to the researchers, the new method could help organizations to strike a better balance between the benefits of AI technologies and the need to protect people’s personal information, making daily interactions with technology safer and more secure. Their testing method allows for the identification of potential weaknesses and areas for improvement before full-scale implementation, which is essential for maintaining safety and accuracy.
A Crucial Tool for Data Protection
Co-author Associate Professor Yves-Alexandre de Montjoye (Data Science Institute, Imperial College, London) said: “Our new scaling law provides, for the first time, a principled mathematical model to evaluate how identification techniques will perform at scale. Understanding the scalability of identification is essential to evaluate the risks posed by these re-identification techniques, including to ensure compliance with modern data protection legislations worldwide.”
Dr. Luc Rocher concluded: “We believe that this work forms a crucial step towards the development of principled methods to evaluate the risks posed by ever more advanced AI techniques and the nature of identifiability in human traces online. We expect that this work will be of great help to researchers, data protection officers, ethics committees, and other practitioners aiming to find a balance between sharing data for research and protecting the privacy of patients, participants, and citizens.”
Reference: “A scaling law to model the effectiveness of identification techniques” by Luc Rocher, Julien M. Hendrickx and Yves-Alexandre de Montjoye, 9 January 2025, Nature Communications.
DOI: 10.1038/s41467-024-55296-6
The work was supported by a grant awarded to Luc Rocher by Royal Society Research Grant RG\R2\232035, the John Fell OUP Research Fund, the UKRI Future Leaders Fellowship [grant MR/Y015711/1], and by the F.R.S.-FNRS. Yves -Alexandre de Montjoye acknowledges funding from the Information Commissioner Office.

News
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]
Instant coffee may damage your eyes, genetic study finds
A new genetic study shows that just one extra cup of instant coffee a day could significantly increase your risk of developing dry AMD, shedding fresh light on how our daily beverage choices may [...]