A new mathematical model enhances the evaluation of AI identification risks, offering a scalable solution to balance technological benefits with privacy protection.
AI tools are increasingly used to track and monitor people both online and in person, but their effectiveness carries significant risks. To address this, computer scientists from the Oxford Internet Institute, Imperial College London, and UCLouvain have developed a new mathematical model designed to help people better understand the dangers of AI and support regulators in safeguarding privacy. Their findings were published in Nature Communications.
This model is the first to offer a solid scientific framework for evaluating identification methods, particularly when handling large-scale data. It can assess the accuracy of techniques like advertising codes and invisible trackers in identifying online users based on minimal information—such as time zones or browser settings—a process known as “browser fingerprinting.”
Lead author Dr. Luc Rocher, Senior Research Fellow, Oxford Internet Institute, part of the University of Oxford, said: “We see our method as a new approach to help assess the risk of re-identification in data release, but also to evaluate modern identification techniques in critical, high-risk environments. In places like hospitals, humanitarian aid delivery, or border control, the stakes are incredibly high, and the need for accurate, reliable identification is paramount.”
Leveraging Bayesian Statistics for Improved Accuracy
The method draws on the field of Bayesian statistics to learn how identifiable individuals are on a small scale, and extrapolate the accuracy of identification to larger populations up to 10x better than previous heuristics and rules of thumb. This gives the method unique power in assessing how different data identification techniques will perform at scale, in different applications and behavioral settings. This could help explain why some AI identification techniques perform highly accurately when tested in small case studies but then misidentify people in real-world conditions.
The findings are highly timely, given the challenges posed to anonymity and privacy caused by the rapid rise of AI-based identification techniques. For instance, AI tools are being trialed to automatically identify humans from their voice in online banking, their eyes in humanitarian aid delivery, or their face in law enforcement.
According to the researchers, the new method could help organizations to strike a better balance between the benefits of AI technologies and the need to protect people’s personal information, making daily interactions with technology safer and more secure. Their testing method allows for the identification of potential weaknesses and areas for improvement before full-scale implementation, which is essential for maintaining safety and accuracy.
A Crucial Tool for Data Protection
Co-author Associate Professor Yves-Alexandre de Montjoye (Data Science Institute, Imperial College, London) said: “Our new scaling law provides, for the first time, a principled mathematical model to evaluate how identification techniques will perform at scale. Understanding the scalability of identification is essential to evaluate the risks posed by these re-identification techniques, including to ensure compliance with modern data protection legislations worldwide.”
Dr. Luc Rocher concluded: “We believe that this work forms a crucial step towards the development of principled methods to evaluate the risks posed by ever more advanced AI techniques and the nature of identifiability in human traces online. We expect that this work will be of great help to researchers, data protection officers, ethics committees, and other practitioners aiming to find a balance between sharing data for research and protecting the privacy of patients, participants, and citizens.”
Reference: “A scaling law to model the effectiveness of identification techniques” by Luc Rocher, Julien M. Hendrickx and Yves-Alexandre de Montjoye, 9 January 2025, Nature Communications.
DOI: 10.1038/s41467-024-55296-6
The work was supported by a grant awarded to Luc Rocher by Royal Society Research Grant RG\R2\232035, the John Fell OUP Research Fund, the UKRI Future Leaders Fellowship [grant MR/Y015711/1], and by the F.R.S.-FNRS. Yves -Alexandre de Montjoye acknowledges funding from the Information Commissioner Office.

News
Superbugs Are Losing to Science, Light, and a Little Spice
Texas A&M researchers have found that curcumin, when activated by light, can weaken antibiotic-resistant bacteria, restoring the effectiveness of conventional antibiotics. Curcumin: A Surprising Ally Against Superbugs In 2017, a woman admitted to a [...]
New Research Shatters the Perfect Pitch Myth
For decades, people believed absolute pitch was an exclusive ability granted only to those with the right genetics or early music training. But new research from the University of Surrey proves otherwise. It’s been [...]
Why Some Drinkers Suffer Devastating Liver Damage While Others Don’t
A study from Keck Medicine of USC found that heavy drinkers with diabetes, high blood pressure, or a large waistline are up to 2.4 times more likely to develop advanced liver disease. These conditions may amplify [...]
“Good” Cholesterol Could Be Bad for Your Eyes – New Study Raises Concerns
‘Good’ cholesterol may be linked to an increased risk of glaucoma in individuals over 55, while, paradoxically, ‘bad’ cholesterol may be associated with a lower risk. These findings challenge conventional beliefs about factors that [...]
Reawakening Dormant Nerve Cells: Groundbreaking Neurotechnology Restores Motor Function
A new electrical stimulation therapy for spinal muscle atrophy (SMA) has shown promise in reactivating motor neurons and improving movement. In a pilot clinical trial, three patients who received spinal cord stimulation for one [...]
AI’s Energy Crisis Solved? A Revolutionary Magnetic Chip Could Change Everything
AI is evolving at an incredible pace, but its growing energy demands pose a major challenge. Enter spintronic devices—new technology that mimics the brain’s efficiency by integrating memory and processing. Scientists in Japan have [...]
Nanotechnology for oil spill response and cleanup in coastal regions
(Nanowerk News) Cleaning up after a major oil spill is a long, expensive process, and the damage to a coastal region’s ecosystem can be significant. This is especially true for the world’s Arctic region, [...]
The Role of Nanotechnology in Space Exploration
Nanotechnology, which involves working with materials at the atomic or molecular level, is becoming increasingly important in space exploration. By improving strength, thermal stability, electrical conductivity, and radiation resistance, nanotechnology is helping create lighter, more [...]
New Study Challenges Beliefs About CBD in Pregnancy, Reveals Unexpected Risks
CBD is gaining popularity as a remedy for pregnancy symptoms like nausea and anxiety, but new research suggests it may not be as safe as many believe. A study from McMaster University found that [...]
Does COVID increase the risk of Alzheimer’s disease?
Scientists discover that even mild COVID-19 can alter brain proteins linked to Alzheimer’s disease, potentially increasing dementia risk—raising urgent public health concerns. A recent study published in the journal Nature Medicine investigated whether both mild and [...]
New MRI Study Reveals How Cannabis Alters Brain Activity and Weakens Memory
A massive new study sheds light on how cannabis affects the brain, particularly during cognitive tasks. Researchers analyzed over 1,000 young adults and found that both heavy lifetime use and recent cannabis consumption significantly reduced brain [...]
How to Assess Nanotoxicity: Key Methods and Protocols
With their high surface area and enhanced physicochemical properties, nanomaterials play a critical role in drug delivery, consumer products, and environmental technologies. However, their nanoscale dimensions enable interactions with cellular components in complex and [...]
Nanotech drug delivery shows lasting benefits, reducing need for repeat surgeries
A nanotechnology-based drug delivery system developed at UVA Health to save patients from repeated surgeries has proved to have unexpectedly long-lasting benefits in lab tests – a promising sign for its potential to help human patients. [...]
Scientists Just Found DNA’s Building Blocks in Asteroid Bennu – Could This Explain Life’s Origins?
Japanese scientists detected all five nucleobases — building blocks of DNA and RNA — in samples returned from asteroid Bennu by NASA’s OSIRIS-REx mission. NASA’s OSIRIS-REx mission brought back 121.6 grams of asteroid Bennu, unveiling nitrogen-rich organic matter, including DNA’s essential [...]
AI-Designed Proteins – Unlike Any Found in Nature – Revolutionize Snakebite Treatment
Scientists have pioneered a groundbreaking method to combat snake venom using newly designed proteins, offering hope for more effective, accessible, and affordable antivenom solutions. By utilizing advanced computational techniques and deep learning, this innovative [...]
New nanosystem offers hope for improved diagnosis and treatment of tongue cancer
A pioneering study has unveiled the Au-HN-1 nanosystem, a cutting-edge approach that promises to transform the diagnosis and treatment of tongue squamous cell carcinoma (TSCC). By harnessing gold nanoparticles coupled with the HN-1 peptide, [...]