Scientists have pioneered a groundbreaking method to combat snake venom using newly designed proteins, offering hope for more effective, accessible, and affordable antivenom solutions.
By utilizing advanced computational techniques and deep learning, this innovative approach has already shown promising results in neutralizing deadly toxins, potentially transforming antivenom development, and offering new strategies for tackling other neglected diseases.
Breakthrough in Antivenom Research
Scientists have designed new proteins — unlike any found in nature — that can neutralize some of the most toxic components of snake venom. Using advanced deep learning and computational methods, researchers have developed these proteins with the potential to create safer, more affordable, and widely accessible treatments compared to existing antivenoms.
Each year, over 2 million people suffer from snakebites, with more than 100,000 deaths and 300,000 cases of severe complications, including limb deformities, amputations, and other long-term disabilities, according to the World Health Organization. The highest burden of snakebites is seen in regions such as Sub-Saharan Africa, South Asia, Papua New Guinea, and Latin America, where access to effective treatment is often limited.
Advancements in Computational Biology
This groundbreaking computational biology research, aimed at improving antivenom therapies, was led by scientists from the UW Medicine Institute for Protein Design and the Technical University of Denmark. Their findings were published in Nature on January 15.
The lead author of the paper is Susana Vazquez Torres of the Department of Biochemistry at the UW School of Medicine and the UW Graduate Program in Biological Physics. Her hometown is Querétaro, Mexico, which is located near viper and rattlesnake habitats. Her professional goal is to invent new drugs for neglected diseases and injuries, including snakebites.

The Challenge of Elapid Snakebites
Her research team, which also included international experts in snakebite research, drugs and diagnostics, and tropical medicine from the United Kingdom and Denmark, concentrated their attention on finding ways to neutralize venom gathered from certain elapids. Elapids are a large group of poisonous snakes, among them cobras and mambas, that live in the tropics and subtropics.
Most elapid species have two small fangs shaped like shallow needles. During a tenacious bite, the fangs can inject venom from glands at the back of the snake’s jaw. Among the venom’s components are potentially lethal three-finger toxins. These chemicals damage bodily tissues by killing cells. More seriously, by interrupting signals between nerves and muscles, three-finger toxins can cause paralysis and death.
Limitations of Current Treatments
At present, venomous snakebites from elapids are treated with antibodies taken from the plasma of animals that have been immunized against the snake toxin. Producing the antibodies is costly, and they have limited effectiveness against three-finger toxins. This treatment can also have serious side effects, including causing the patient to go into shock or respiratory distress.
“Efforts to try to develop new drugs have been slow and laborious,” noted Vazquez Torres.
Innovations in Protein Design
The researchers used deep learning computational methods to try to speed the discovery of better treatments. They created new proteins that interfered with the neurotoxic and cell-destroying properties of the three-finger toxin chemicals by binding with them.
Through experimental screening, the scientists obtained designs that generated proteins with thermal stability and high binding affinity. The actual synthesized proteins were almost a complete match at the atomic level with the deep-learning computer design.
In lab dishes, the designed proteins effectively neutralized all three of the subfamilies of three-finger toxins tested. When given to mice, the designed proteins protected the animals from what could have been a lethal neurotoxin exposure.
Promising Results and Future Directions
Designed proteins have key advantages. They could be manufactured with consistent quality through recombinant DNA technologies instead of by immunizing animals. (Recombinant DNA technologies in this case refer to the lab methods the scientists employed to take a computationally designed blueprint for a new protein and synthesize that protein.)
Also, the new proteins designed against snake toxins are small, compared to antibodies. Their smaller size might allow for greater penetration into tissues to quickly counteract the toxins and reduce damage.
Expanding the Potential of Computational Design
In addition to opening new avenues to develop antivenoms, the researchers think computational design methods could be used to develop other antidotes. Such methods also might be used to discover medications for undertreated illnesses that affect countries with significantly limited scientific research resources.
“Computational design methodology could substantially reduce the costs and resource requirements for development of therapies for neglected tropical diseases,” the researchers noted.
Explore Further: AI Triumphs Over Venom: Revolutionary Snakebite Antidotes Unveiled
Reference: “De novo designed proteins neutralize lethal snake venom toxins” by Susana Vázquez Torres, Melisa Benard Valle, Stephen P. Mackessy, Stefanie K. Menzies, Nicholas R. Casewell, Shirin Ahmadi, Nick J. Burlet, Edin Muratspahić, Isaac Sappington, Max D. Overath, Esperanza Rivera-de-Torre, Jann Ledergerber, Andreas H. Laustsen, Kim Boddum, Asim K. Bera, Alex Kang, Evans Brackenbrough, Iara A. Cardoso, Edouard P. Crittenden, Rebecca J. Edge, Justin Decarreau, Robert J. Ragotte, Arvind S. Pillai, Mohamad Abedi, Hannah L. Han, Stacey R. Gerben, Analisa Murray, Rebecca Skotheim, Lynda Stuart, Lance Stewart, Thomas J. A. Fryer, Timothy P. Jenkins and David Baker, 15 January 2025, Nature.
DOI: 10.1038/s41586-024-08393-x
The senior researchers on the project to design protein treatments for elapid snakebites were Timothy J. Perkins at the Technical University of Denmark and David Baker of the UW Medicine Institute for Protein Design and the Howard Hughes Medical Institute. Baker is a professor of biochemistry at the UW School of Medicine.
The University of Washington has submitted a provisional U.S. patent application for the design and composition of the proteins created in this study.

News
Cyborg tadpoles are helping us learn how brain development starts
How does our brain, which is capable of generating complex thoughts, actions and even self-reflection, grow out of essentially nothing? An experiment in tadpoles, in which an electronic implant was incorporated into a precursor [...]
Prime Editing: The Next Frontier in Genetic Medicine
By Dr. Chinta SidharthanReviewed by Benedette Cuffari, M.Sc. Discover how prime editing is redefining the future of medicine by offering highly precise, safe, and versatile DNA corrections, bringing hope for more effective treatments for genetic diseases [...]
Can scientists predict life longevity from a drop of blood?
Discover how a new epigenetic clock measures how fast you are really aging from just a drop of blood or saliva. A recent study published in the journal Nature Aging constructed an intrinsic capacity (IC) clock [...]
What is different about the NB.1.8.1 Covid variant?
For many of us, Covid-19 feels like a chapter we’ve closed – along with the days of PCR tests, mask mandates and daily case updates. But while life may feel back to normal, the [...]
Scientists discover single cell creatures can learn new behaviours
It was previously thought that learning behaviours only applied to animals with complex brain and nervous systems, but a new study has proven that this may also occur in individual cells. As a result, this new evidence may change how [...]
Virus which ’causes multiple organ failure’ found at popular Spanish holiday destination
British tourists planning trips to Spain have been warned after a deadly virus that can cause multiple organ failure has been detected in the country. The Foreign Office issued the alert on its dedicated website Travel [...]
Urgent health warning as dangerous new Covid virus from China triggers US outbreak
A dangerous new Covid variant from China is surging in California, health officials warn. The California Department of Public Health warned this week the highly contagious NB.1.8.1 strain has been detected in the state, making it the [...]
How the evolution of a single gene allowed the plague to adapt, prolonging the pandemics
Scientists have documented the way a single gene in the bacterium that causes bubonic plague, Yersinia pestis, allowed it to survive hundreds of years by adjusting its virulence and the length of time it [...]
Inhalable Nanovaccines: The Future of Needle-Free Immunization
The COVID-19 pandemic highlighted the need for adaptable and scalable vaccine technologies. While mRNA vaccines have improved disease prevention, most are delivered by intramuscular injection, which may not effectively prevent infections that begin at [...]
‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover
A new material developed at Cornell University could significantly improve the delivery and effectiveness of mRNA vaccines by replacing a commonly used ingredient that may trigger unwanted immune responses in some people. Thanks to [...]
You could be inhaling nearly 70,000 plastic particles annually, what it means for your health
Invisible plastics in the air are infiltrating our bodies and cities. Scientists reveal the urgent health dangers and outline bold solutions for a cleaner, safer future. In a recent review article published in the [...]
Experts explain how H5 avian influenza adapts to infect more animals
A new global review reveals how rapidly evolving H5 bird flu viruses are reaching new species, including dairy cattle, and stresses the urgent need for coordinated action to prevent the next pandemic. Since its [...]
3D-printed device enables precise modeling of complex human tissues in the lab
A new, easily adopted, 3D-printed device will enable scientists to create models of human tissue with even greater control and complexity. An interdisciplinary group of researchers at the University of Washington and UW Medicine [...]
Ancient DNA sheds light on evolution of relapsing fever bacteria
Researchers at the Francis Crick Institute and UCL have analyzed ancient DNA from Borrelia recurrentis, a type of bacteria that causes relapsing fever, pinpointing when it evolved to spread through lice rather than ticks, and [...]
Cold Sore Virus Linked to Alzheimer’s, Antivirals May Lower Risk
Summary: A large study suggests that symptomatic infection with herpes simplex virus 1 (HSV-1)—best known for causing cold sores—may significantly raise the risk of developing Alzheimer’s disease. Researchers found that people with HSV-1 were 80% [...]
Nanoparticle-Based Combination Therapy for Resistant Melanoma
A recent study published in Small addresses the persistent difficulty of treating refractory melanoma, an aggressive form of skin cancer that often does not respond to existing therapies. Although diagnostic tools and immunotherapies have improved in [...]