University of Seville researchers, in collaboration with the University of Nottingham, have managed to create the first image of nanoparticles of stabilised gold with biodegradable and biocompatible systems that have been obtained with 3D-printng techniques. The image chosen for this test was the logo of the University of Seville.

This achievement will have applications in the pharmaceutical industry, such as in the preparation of biocompatible biosensors based in gold, which have already been shown to be effective in the detection of carcinogenic cells and tumour biomarkers. In recent years, additive manufacturing, also commonly known as 3D printing, has been recognised as the ideal technology for applications that require intricate geometries or personalisation. Its manufacturing based on layers will reduce general small-batch manufacturing costs in comparison with traditional production methods. This has caught the attention of the pharmaceutical industry, which has seen a gateway to the total personalisation of treatment in this technology.

The research was centred on the technique called inkjet printing. This offers advantages such as its high resolution and the possibility it offers of being able to print more than one material during the same printing process. Using this technique, the researchers have proposed the manufacturing of systems that could potentially be used as personalised biosensors based on the conductivity and biocompatibility of gold.

Currently, existing gold inks for Inkjet Printing are based in nanoparticles of this metal, but they are highly unstable, as they bind together easily and are difficult to print. For that reason, the development of stale gold inks that are easy to print with has been invaluable.

Image Credit:  Nottingham University and University of Seville

News This Week

Liquid Lightning: Nanotechnology Unlocks New Energy

EPFL researchers have discovered that nanoscale devices harnessing the hydroelectric effect can harvest electricity from the evaporation of fluids with higher ion concentrations than purified water, revealing a vast untapped energy potential. Evaporation is a natural [...]