A safe, fast and cheap testing method that uses magnetic nanoparticles to detect viruses in both clinical and wastewater samples has been developed by KAUST researchers. The centrifuge-free approach is compatible with magnetic bead-based automated systems that are already used to process hundreds of samples.

To diagnose COVID-19, clinicians extract SARS-CoV-2 viral RNA from different types of clinical samples, such as nasopharyngeal swabs, and detect the virus using real-time reverse transcription polymerase chain reaction assays.

But the sheer scale of the pandemic could lead to shortages in essential supplies for diagnostic testing, such as commercial reagents and laboratories that satisfy biosafety requirements. Conventional chemical supplies are also expensive, making them less accessible to low-income countries and remote healthcare facilities.

As the virus has been detected in wastewater before community outbreaks, keeping a close eye on its presence in sewage is becoming an important public health measure. Due to the risk of handling infectious samples, this will require an approach that is safe and easy to perform, while using cheap chemicals that are readily available.

To address these challenges, Ramos-Mandujano and Mo Li, Assistant Professor of bioscience, developed an open-source protocol for detecting viral RNA in clinical and environmental samples using magnetic nanoparticles, which isolate nucleic acids without centrifuging or expensive reagents.

“Our method enables any basic biology lab to make homemade silica magnetic nanoparticles from readily available materials,” says Li.

Image Credit:    Public Domain

Post by Amanda Scott, NA CEO.  Follow her on twitter @tantriclens

Thanks to Heinz V. Hoenen.  Follow him on twitter: @HeinzVHoenen

News

Researchers Discover New Origin of Deep Brain Waves

Understanding hippocampal activity could improve sleep and cognition therapies. Researchers from the University of California, Irvine’s biomedical engineering department have discovered a new origin for two essential brain waves—slow waves and sleep spindles—that are critical for [...]