In a study printed in the journal ACS Applied Materials & Interfaces, chemical vapor deposition approach was used to produce a nanometric hexagonal boron nitride (h-BN) coating on the cambered sides of every fiber in graphene glass fiber fabric (GGFF).
Encapsulating Carbon-based Materials can Improve Oxidation Resistance
Owing to their superior thermal and electrical characteristics, carbon-based materials like carbon fiber, graphene, and carbon nanotubes, are commonly employed in electronic systems.
The chemical and thermal stabilities of carbonaceous electronic systems are pivotal prerequisites for their long-term steady operation.
On the other hand, these materials face the difficult problem of oxidation, particularly when operating at high temperatures. Encapsulation is among the most effective methods for increasing the oxidative resistance of materials via oxygen isolation.
Pros and Cons of Different Encapsulating Materials
Thanks to their accessibility, flexibility, and affordability, organic polymers like polyurethane, polypropylene, polyethene, and poly-(vinylidene chloride) are commonly utilized for encapsulating devices. Their low thermal stabilities, however, restrict their usage in settings having temperatures greater than 200 °C.
Ceramic encapsulation materials have great thermal stability, but their poor conformability and flexibility may readily induce fractures in the encapsulating films, particularly after repeated tensile and bending stresses, which would amplify oxygen penetration and hasten performance deterioration of the system. As a result, an encapsulating (or coating) material that is conformal, flexible, and thermally stable is needed for use in electronic systems.
With its excellent chemical and thermal stability, hexagonal boron nitride (h-BN) is considered a suitable encapsulation material against oxidation for carbon-based electronic systems.
What is the Best Approach for Coating with Hexagonal Boron Nitride?
The deposition of h-BN layers on material surfaces can be accomplished via pulsed laser deposition; however, it is hampered by greater expenses and poor crystal quality. Another alternate encapsulating strategy is to wrap material surfaces with h-BN powder dispersion. Unfortunately, large area homogeneity is hard to attain, and the thick h-BN encapsulation films frequently influence the inherent elasticity of the material to be enclosed.
Mechanically exfoliating from bulk h-BN and distributing from CVD-grown thin-layer h-BN are both successful methods for obtaining good quality h-BN atomic films, which have been extensively employed to enclose different devices based on 2D materials. Nonetheless, both techniques are restricted in scalability because of the significant difficulties in realizing large-area intact exfoliation or transference.
Complete-surface, conforming encapsulation for delicately structured items, such as complete-surface encapsulation for fiber-like materials, poses more complications and needs for encapsulation methods and has not been adequately addressed by existing methodologies.
Bringing out the Best of Graphene Glass Fiber Fabric
Lately, graphene glass fiber fabric (GGFF), a sophisticated graphene-based electrothermal material, has been successfully created. GGFF demonstrates remarkable electrothermal behavior by incorporating graphene’s high conductance of heat and electricity with the glass fiber’s outstanding mechanical strength and elasticity.
As a result of oxidation, graphene cannot exist at temperatures over 500 °C in the environment. Therefore, the GGFF electrothermal system’s long-term steady operating temperature is severely constrained.
Effective encapsulating techniques for carbon-based electronic systems, particularly those with complicated architectures including this fiber-like GGFF, are promptly required, which cannot be provided by typical exfoliating or transferring processes. The packaging of pliable electronics without sacrificing their elasticity complicates the encapsulation process even further.
Highlights of the Study
In this study, aimed toward the GGFF electrothermal device, on-site CVD production of nanometric h-BN films was used to provide flexible, complete-surface, conforming encapsulation for every fiber in the sizable fabric.
The h-BN-enclosed GGFF (h-BN/GGFF) demonstrated improved resistance to oxidation in the environment, with sustained heat durations up to one order of magnitude greater than plain GGFF without compromising the excellent elasticity and strength of the fabric. The h-BN coating had no effect on GGFF’s remarkable infrared radiation capacity, which is a crucial feature used in radiative heat control.
Theoretical models identified additional processes for h-BN/ GGFF’s increased resistance against oxidation. The coating of h-BN may dramatically enhance the adsorptive energy and decrease the adsorbing life of oxygen, both of which are important in oxidizing graphene.
This research presented a flexible, complete-surface, and conforming encapsulation approach aimed at the fiber-like graphene electrothermal system, which can be scaled up and extended to other carbon-based materials and two-dimensional materials, including devices with complex shapes, promoting the advancement of nanoscale electronics in harsh environments.

News
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]
The world’s first AI Hospital, developed in China is transforming healthcare
Artificial Intelligence and its developments have had a revolutionary impact on society, and healthcare is not an exception. China has made massive strides in AI integrated healthcare, and continues to do so as AI [...]