In a study printed in the journal ACS Applied Materials & Interfaces, chemical vapor deposition approach was used to produce a nanometric hexagonal boron nitride (h-BN) coating on the cambered sides of every fiber in graphene glass fiber fabric (GGFF).
Encapsulating Carbon-based Materials can Improve Oxidation Resistance
Owing to their superior thermal and electrical characteristics, carbon-based materials like carbon fiber, graphene, and carbon nanotubes, are commonly employed in electronic systems.
The chemical and thermal stabilities of carbonaceous electronic systems are pivotal prerequisites for their long-term steady operation.
On the other hand, these materials face the difficult problem of oxidation, particularly when operating at high temperatures. Encapsulation is among the most effective methods for increasing the oxidative resistance of materials via oxygen isolation.
Pros and Cons of Different Encapsulating Materials
Thanks to their accessibility, flexibility, and affordability, organic polymers like polyurethane, polypropylene, polyethene, and poly-(vinylidene chloride) are commonly utilized for encapsulating devices. Their low thermal stabilities, however, restrict their usage in settings having temperatures greater than 200 °C.
Ceramic encapsulation materials have great thermal stability, but their poor conformability and flexibility may readily induce fractures in the encapsulating films, particularly after repeated tensile and bending stresses, which would amplify oxygen penetration and hasten performance deterioration of the system. As a result, an encapsulating (or coating) material that is conformal, flexible, and thermally stable is needed for use in electronic systems.
With its excellent chemical and thermal stability, hexagonal boron nitride (h-BN) is considered a suitable encapsulation material against oxidation for carbon-based electronic systems.
What is the Best Approach for Coating with Hexagonal Boron Nitride?
The deposition of h-BN layers on material surfaces can be accomplished via pulsed laser deposition; however, it is hampered by greater expenses and poor crystal quality. Another alternate encapsulating strategy is to wrap material surfaces with h-BN powder dispersion. Unfortunately, large area homogeneity is hard to attain, and the thick h-BN encapsulation films frequently influence the inherent elasticity of the material to be enclosed.
Mechanically exfoliating from bulk h-BN and distributing from CVD-grown thin-layer h-BN are both successful methods for obtaining good quality h-BN atomic films, which have been extensively employed to enclose different devices based on 2D materials. Nonetheless, both techniques are restricted in scalability because of the significant difficulties in realizing large-area intact exfoliation or transference.
Complete-surface, conforming encapsulation for delicately structured items, such as complete-surface encapsulation for fiber-like materials, poses more complications and needs for encapsulation methods and has not been adequately addressed by existing methodologies.
Bringing out the Best of Graphene Glass Fiber Fabric
Lately, graphene glass fiber fabric (GGFF), a sophisticated graphene-based electrothermal material, has been successfully created. GGFF demonstrates remarkable electrothermal behavior by incorporating graphene’s high conductance of heat and electricity with the glass fiber’s outstanding mechanical strength and elasticity.
As a result of oxidation, graphene cannot exist at temperatures over 500 °C in the environment. Therefore, the GGFF electrothermal system’s long-term steady operating temperature is severely constrained.
Effective encapsulating techniques for carbon-based electronic systems, particularly those with complicated architectures including this fiber-like GGFF, are promptly required, which cannot be provided by typical exfoliating or transferring processes. The packaging of pliable electronics without sacrificing their elasticity complicates the encapsulation process even further.
Highlights of the Study
In this study, aimed toward the GGFF electrothermal device, on-site CVD production of nanometric h-BN films was used to provide flexible, complete-surface, conforming encapsulation for every fiber in the sizable fabric.
The h-BN-enclosed GGFF (h-BN/GGFF) demonstrated improved resistance to oxidation in the environment, with sustained heat durations up to one order of magnitude greater than plain GGFF without compromising the excellent elasticity and strength of the fabric. The h-BN coating had no effect on GGFF’s remarkable infrared radiation capacity, which is a crucial feature used in radiative heat control.
Theoretical models identified additional processes for h-BN/ GGFF’s increased resistance against oxidation. The coating of h-BN may dramatically enhance the adsorptive energy and decrease the adsorbing life of oxygen, both of which are important in oxidizing graphene.
This research presented a flexible, complete-surface, and conforming encapsulation approach aimed at the fiber-like graphene electrothermal system, which can be scaled up and extended to other carbon-based materials and two-dimensional materials, including devices with complex shapes, promoting the advancement of nanoscale electronics in harsh environments.
News
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]















