A large multinational group of researchers has shown how the Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has gained exceptional immune evasion properties but also a much lower propensity to enter cells such as those in lung alveoli, resulting in its reduced pathogenicity. Their paper is currently released as an unedited version of the manuscript prior to publication in the journal Nature.
The Omicron variant of SARS-CoV-2 initially detected in South Africa in November 2021 during the ongoing coronavirus disease 2019 (COVID-19) pandemic, spread around the world at a ferocious pace, and is known to carry more than 30 mutations in its spike glycoprotein.
Moreover, the Omicron variant has been linked to a rather rapid increase in case numbers, with recent data demonstrating substantial re-infection rates and vaccine ‘breakthrough’ potential, probably due to a successful evasion of neutralizing antibody responses.
On the other hand, recent findings suggest (somewhat paradoxically) that there is also a reduced disease severity in individuals infected with the Omicron variant when compared to the Delta variant of concern. The pertinent question then is – does that mean SARS-CoV-2 is evolving into a milder virus?
In this Nature paper, the large international research group explored biological properties of Omicron variant of concern with particular focus on spike-mediated evasion of neutralizing antibodies, increased receptor binding affinity, as well as a shift in tropism away from cells expressing TMPRSS2 and reduced ability to generate syncytia (or fused cells).
Appraising neutralization and cell entry
One of the critical questions in this study was whether antibodies developed after vaccinations are able to neutralize Omicron. For that purpose, the researchers have synthesized codon-optimized spike expression plasmids for spike glycoproteins for both Delta and Omicron variants of concern.
Then they have generated pseudovirus particles by co-transfecting the spike expression plasmids with a lentivirus, which represents an efficient method for the delivery of transgenes for research purposes. Many different cell lines were used to explore the propensity for cell entry, as well as the action of certain drugs.
In order to confirm the loss of neutralizing activity against the Omicron variant following the second vaccine dose, the researchers have used a live virus experimental system for comparing Delta and Omicron variants against serum specimens taken four weeks after the second dose of BioNTech/Pfizer (BNT162b2) vaccine.
Lower affinity for the cell receptor
The study has highlighted that spike glycoprotein in Omicron SARS-CoV-2 variant comes with a higher affinity for angiotensin-converting enzyme 2 (ACE2) cell receptor (which is pivotal for cell entry) in comparison to the Delta variant of concern.
Furthermore, there is a marked change of antigenicity due to a cornucopia of mutations, which results in significant evasion of monoclonal antibodies used for treatment, but also vaccine-elicited polyclonal neutralizing antibodies after two doses. Still, mRNA vaccination as a third vaccine dose in a way rescues and broadens this neutralization process.
The defect for Omicron pseudovirus to enter specific cell types in an effective manner has been correlated with higher cellular RNA expression of TMPRSS2 (Transmembrane Serine Protease 2), while a knock-down of TMPRSS2 influenced Delta entry to a much greater extent than Omicron.
More specifically, the replication process was similar for Omicron and Delta variants in human nasal epithelial cultures; however, in lower airway organoids, lung cells, and intestinal cells, Omicron showed much lower replication potential.
Drug inhibitors that target specific entry pathways demonstrated that the Omicron spike glycoprotein does not efficiently utilize TMPRSS2 protease, which actually promotes cell entry via plasma membrane fusion. This means this variant depends more on cell entry via the endocytic pathway.
The need for complex molecular insights
In summary, the Omicron SARS-CoV-2 variant has gained immune evasion properties, but at the same time compromised cell entry in TMPRSS2 expressing cells (primarily those in alveoli), as well as the ability to form syncytia or cell fusion – a combination characteristically linked to reduced ability to cause a severe disease.
“Our data showing tropism differences for Omicron in organoid systems and human nasal epithelial cultures are limited by the fact that they are in vitro systems, albeit using primary human tissue”, state study authors in this Nature paper.
“It should also be noted that levels of TMPRRS2 may impact ACE2, particularly as TMPRSS2 has been implicated in ACE2 cleavage, and our effect sizes were impacted by ACE2 expression”, they emphasize.
Most importantly, the experience with the Omicron variant has clearly shown that any predictions regarding replication and tropism based only on gene sequence can be misleading; thus, a comprehensive molecular understanding of the tropism change will be pivotal as novel SARS-CoV-2 variants continue to emerge.

News
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]
Instant coffee may damage your eyes, genetic study finds
A new genetic study shows that just one extra cup of instant coffee a day could significantly increase your risk of developing dry AMD, shedding fresh light on how our daily beverage choices may [...]
Nanoneedle patch offers painless alternative to traditional cancer biopsies
A patch containing tens of millions of microscopic nanoneedles could soon replace traditional biopsies, scientists have found. The patch offers a painless and less invasive alternative for millions of patients worldwide who undergo biopsies [...]
Small antibodies provide broad protection against SARS coronaviruses
Scientists have discovered a unique class of small antibodies that are strongly protective against a wide range of SARS coronaviruses, including SARS-CoV-1 and numerous early and recent SARS-CoV-2 variants. The unique antibodies target an [...]