A recent study published in Scientific Reports has demonstrated the antiviral effectiveness of cetylpyridinium chloride against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Cetylpyridinium chloride is an ammonium compound commonly present in mouthwash.
Background
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of coronavirus disease 2019 (COVID-19) pandemic, is an enveloped, positive-sense, single-stranded RNA virus belonging to the human betacoronavirus family. The virus and its more aggressive variants have caused unprecedented damage to the global healthcare system, with more than 590 million confirmed infections and over 6.4 million deaths.
The primary entry site of SARS-CoV-2 into the human body is the respiratory epithelium, which expresses high levels of the entry receptor angiotensin-converting enzyme 2 (ACE2). Evidence indicates that the virus can replicate in the oral cavity and release into saliva. The literature has also established an association between salivary content of SARS-CoV-2 and COVID-19 aggravation.
Considering the significance of oral hygiene in the context of SARS-CoV-2 infection, scientists in the current study have investigated the antiviral effect as well as the mode of action of cetylpyridinium chloride against SARS-CoV-2 infection.
Cetylpyridinium chloride is an antimicrobial compound widely used in mouthwash to prevent bacterial, fungal, or viral infections in the oral cavity. The compound is known to exert antimicrobial effects by disrupting lipid membrane via physicochemical interactions. A few studies have indicated that cetylpyridinium chloride is effective against wild-type SARS-CoV-2 at low concentrations (10–50 µg/ml).
Impact of cetylpyridinium chloride on SARS-CoV-2 infectivity
The study examined the antiviral effect of cetylpyridinium chloride on a range of SARS-CoV-2 strains, including wild-type SARS-CoV-2 and alpha, beta, and gamma variants. The plaque assay was conducted to examine viral infectivity in the presence and absence of the compound.
The findings revealed that cetylpyridinium chloride at low concentrations (5 – 40 µg/ml) significantly suppresses the infectivity of all tested SARS-CoV-2 strains in a dose-dependent manner. The tested concentrations were lower than that used in commercially available mouthwash (50 µg/ml).
Impact of cetylpyridinium chloride on viral entry
The findings revealed that cetylpyridinium chloride significantly reduces the expression and copy number of viral RNA in a dose-dependent manner. These findings indicate that cetylpyridinium chloride reduces the amount of infectious virus before host cell entry.
Antiviral activity of cetylpyridinium chloride in saliva
Human saliva is highly viscous and contains many proteins that may interfere with the antiviral efficacy of cetylpyridinium chloride. Saliva samples collected from healthy donors were mixed with the virus and cetylpyridinium chloride to determine the antiviral efficacy of the compound in saliva.
The findings revealed that cetylpyridinium chloride significantly suppresses viral infectivity even in saliva in a dose-dependent manner.
Antiviral mode of action of cetylpyridinium chloride
Cetylpyridinium chloride-treated SARS-CoV-2 was subjected to sucrose density analysis and transmission electron microscopy to determine the impact of cetylpyridinium chloride on viral morphology.
The findings revealed that cetylpyridinium chloride does not impact the overall structure of the virus. The spherical particle structure of SARS-CoV-2 remained unchanged after cetylpyridinium chloride treatment.
Study significance
The study highlights the potency of cetylpyridinium chloride in inhibiting SARS-CoV-2 and its variants even at low concentrations. The antiviral activity of the compound remains unchanged in human saliva.
The study has tested the antiviral efficacy of a commercial mouthwash that contains a similar concentration of cetylpyridinium chloride as used in the study. The mouthwash exhibits similar or even better antiviral efficacy than pure cetylpyridinium chloride solution. This indicates that the other ingredients present in the mouthwash do not interfere with the anti-SARS-CoV-2 activity of cetylpyridinium chloride.
Regarding mode of action, the study suggests that cetylpyridinium chloride exerts anti-SARS-CoV-2 activity most probably by denaturing viral proteins and not by disrupting lipid membrane.
Overall, the study indicates that cetylpyridinium chloride-containing products can be used as a preventive measure to reduce the transmission rate and progression of SARS-CoV-2 infection.
An ongoing clinical study is examining the effect of cetylpyridinium chloride on SARS-CoV-2 viral load in the saliva of COVID-19 patients.

News
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]
Instant coffee may damage your eyes, genetic study finds
A new genetic study shows that just one extra cup of instant coffee a day could significantly increase your risk of developing dry AMD, shedding fresh light on how our daily beverage choices may [...]
Nanoneedle patch offers painless alternative to traditional cancer biopsies
A patch containing tens of millions of microscopic nanoneedles could soon replace traditional biopsies, scientists have found. The patch offers a painless and less invasive alternative for millions of patients worldwide who undergo biopsies [...]