ClSARS-CoV-2, the virus that causes COVID-19, can relieve pain, according to a new study by University of Arizona Health Sciences researchers.

The finding may explain why nearly half of people who get COVID-19 experience few or no symptoms, even though they are able to spread the disease, according to the study’s corresponding author Rajesh Khanna, Ph.D., a professor in the College of Medicine—Tucson’s Department of Pharmacology.

“It made a lot of sense to me that perhaps the reason for the unrelenting spread of COVID-19 is that in the early stages, you’re walking around all fine as if nothing is wrong because your pain has been suppressed,” said Dr. Khanna.

“You have the virus, but you don’t feel bad because you pain is gone. If we can prove that this pain relief is what is causing COVID-19 to spread further, that’s of enormous value.”

The paper, “SARS-CoV-2 Spike protein co-opts VEGF-A/Neuropilin-1 receptor signalingto induce analgesia,” will be published in PAIN.

The U.S. Centers for Disease Control and Prevention released updated data Sept. 10 estimating 50% of COVID-19 transmission occurs prior to the onset of symptoms and 40% of COVID-19 infections are asymptomatic.

“This research raises the possibility that pain, as an early symptom of COVID-19, may be reduced by the SARS-CoV-2 spike protein as it silences the body’s pain signaling pathways,” said UArizona Health Sciences Senior Vice President Michael D. Dake, MD.

“University of Arizona Health Sciences researchers at the Comprehensive Pain and Addiction Center are leveraging this unique finding to explore a novel class of therapeutics for pain as we continue to seek new ways to address the opioid epidemic.”

Viruses infect host cells through protein receptors on cell membranes. Early in the pandemic, scientists established that the SARS-CoV-2 spike protein uses the angiotensin-converting enzyme 2 (ACE2) receptor to enter the body. But in June, two papers posted on the preprint server bioRxiv pointed to neuropilin-1 as a second receptor for SARS-CoV-2.

“That caught our eye because for the last 15 years my lab has been studying a complex of proteins and pathways that relate to pain processing that are downstream of neuropilin,” said Dr. Khanna, who is affiliated with the UArizona Health Sciences Comprehensive Pain and Addiction Center and is a member of the UArizona BIO5 Institute. “So we stepped back and realized this could mean that maybe the spike protein is involved in some sort of pain processing.”

Image Credit:   Envato/Amanda Scott

Post by Amanda Scott, NA CEO.  Follow her on twitter @tantriclens

Thanks to Heinz V. Hoenen.  Follow him on twitter: @HeinzVHoenen

Read the whole article

News

COVID-19 May Deplete Testosterone

Summary: A new study suggests COVID-19 may deplete testosterone levels in males. Findings reveal as testosterone decreased, the severity of coronavirus increased. Men who died from coronavirus infection had significantly lower mean testosterone than those [...]