Current state-of-the-art techniques have clear limitations when it comes to imaging the smallest nanoparticles, making it difficult for researchers to study viruses and other structures at the molecular level.

Scientists from the University of Houston and the University of Texas M.D. Anderson Cancer Center have reported in Nature Communications a new optical imaging technology for nanoscale objects, relying upon unscattered light to detect nanoparticles as small as 25 nanometers in diameter. The technology, known as PANORAMA, uses a glass slide covered with gold nanodiscs, allowing scientists to monitor changes in the transmission of light and determine the target’s characteristics.

PANORAMA takes its name from Plasmonic Nano-aperture Label-free Imaging (PlAsmonic NanO-apeRture lAbel-free iMAging), signifying the key characteristics of the technology. PANORAMA can be used to detect, count and determine the size of individual dielectric nanoparticles.

Wei-Chuan Shih, professor of electrical and computer engineering at UH and corresponding author for the paper, said the smallest transparent object a standard microscope can image is between 100 nanometers and 200 nanometers. That’s mainly because—in addition to being so small—they don’t reflect, absorb or “scatter” enough light, which could allow imaging systems to detect their presence.

Labeling is another commonly used technique; it requires researchers to know something about the particle they are studying—that a virus has a spike protein, for example—and engineer a way to tag that feature with fluorescent dye or some other method in order to more easily detect the particle.

“Otherwise, it will appear as invisible as a tiny dust particle under the microscope, because it’s too small to detect,” Shih said.

Another drawback? Labeling is only useful if researchers already know at least something about the particle they want to study.

“With PANORAMA, you don’t have to do the labeling,” Shih said. “You can view it directly because PANORAMA does not rely on detecting the scattered light from the nanoparticle.”

Top Image Credit:   University of Houston

Post by Amanda Scott, NA CEO.  Follow her on twitter @tantriclens

Thanks to Heinz V. Hoenen.  Follow him on twitter: @HeinzVHoenen

Read the whole article

News

A DNA-based nanogel for targeted chemotherapy

Current chemotherapy regimens slow cancer progression and save lives, but these powerful drugs affect both healthy and cancerous cells. Now, researchers reporting in ACS' Nano Letters have designed DNA-based nanogels that only break down and [...]