Researchers from Skoltech and their colleagues in Russia and Spain have reported a proof-of-concept demonstration of a new radiation-safe method for mapping the internal structure and stress distribution in samples of materials at the nanoscale, with a resolution about 100 times higher than that of the currently available techniques: X-ray and neutron tomography. The team believes that its 3D stress nanotomography could eventually become a standard metrological technique for nanotechnology. The study came out in the Journal of the Mechanics and Physics of Solids.
The properties of materials change under stress, and this has been exploited by human technology from ancient smiths forging metalware to prestressed concrete enabling the existence of some of the tallest buildings and largest bridges of our time. Now, engineers working on ultrasmall devices could also benefit from stressed materials in ways many of which are hard to conceive ahead of time. But there’s a caveat.
“To exploit stressed materials, you need a way to precisely tell how stress is distributed on the inside, and hence how the properties will vary across the sample,” study co-author and Skoltech Professor Nikolai Brilliantov explained. “This involves the 3D mapping of internal inhomogeneities, such as dense spots and cavities, which is usually accomplished with tomography.”
Same as with the familiar CT scan, tomography in general denotes methods for investigating the internal structure of an object slice by slice, without damaging it. The object is illuminated from many angles, with the passing radiation detected on the opposite side. This is repeated for many separate planes “cutting” through the sample, resulting in a series of 2D “slices,” later combined into a complete 3D model via some rather sophisticated mathematics.
The two kinds of tomography that could potentially help in stress-aware nanotechnology rely on X-rays and neutrons to screen the sample. Both entail direct radiation hazards for the personnel during operation and induce “secondary” radioactivity in the workplace. The process also runs the risk of damaging the sample due to its repeated exposure to high-energy rays. Most importantly, the sensors used to detect the passing radiation have grain sizes that are too large. That is, they make it impossible to obtain truly nanoresolved images. As for transmission electron microscopy, it has the principal limitation that the samples should be extremely thin slices.
“We address all of these shortcomings and open the way for future nanotechnology applications by demonstrating a new kind of tomography that yields about 100 times higher resolution and does not use hazardous radiation, avoiding both the health issues and damage to the sample,” Brilliantov said.
At the heart of stress nanotomography is the phenomenon of piezoelectricity: Some materials accumulate electric charge when exposed to mechanical stress. Known as piezoelectric materials, these include a subclass called ferroelectrics, for which the stress-to-electricity conversion is particularly pronounced. The latter were used as samples for analysis in the study, but according to the team, the new stress tomography should work on other solid materials, too, but in that case ferroelectrics would have to play an auxiliary role.
Here is how the proof-of-concept system works. A metal needle slides across the surface of a ferroelectric material many times over in different directions and pressing down with varying force. All the while, the varying electric field produced by the material under pressure is recorded as electrical current pulses induced in the metal tip. Since the measured electric field is directly related to the material’s local density at any given point, it is possible to reconstruct the internal structure of the sample and its stress distribution from those data.
Reconstructing the 3D structure from the collected tomography data is known as solving the inverse problem, and it is far from trivial. “This is the first time the inverse problem has been solved for a piezoelectric material,” study co-author and Skoltech Research Scientist Gleb Ryzhakov commented. “First, we had to create a model that explains what actually happens in terms of physics as the metal tip slides across the sample surface. Second, we came up with the mathematical tools for solving the inverse problem. Third, we developed an applied software suite for recovering tomography images from the recorded current signals.”
According to the team, one of the ways to enhance the technique in the future will be by expanding the range of materials whose inner makeup can be studied to include nonpiezoelectric solids. “It’s a matter of sophisticated engineering: Provided we can manufacture a very thin but durable piezoelectric film, we could lay it between the metal tip of the tomograph and the sample. Theoretically, it should then work on arbitrary materials, but the electric field measurements will have to be very precise,” Ryzhakov added.
“We expect that in the future, such stress nanotomography will be routinely incorporated in numerous stress-based nanotechnologies,” Brilliantov concluded.
News
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]















