Conventional cancer therapies risk causing damage to healthy tissue while working to destroy cancer cells. Researchers are developing novel therapeutics based on nanotechnology to overcome this limitation, as well as to improve the pharmacokinetics of a pharmaceutical and reduce the related toxicities (Nat Rev Drug Discov 2021; https://doi.org/10.1038/s41573-020-0090-8).
Another encouraging area of nanotechnology in oncology is its use in enhancing immunotherapy (Nanoscale 2019; doi: 10.1039/c9nr05371a). T cells are important fighters in an immune response, and T cell-based immunotherapy of cancer is a rapidly developing field. While immunotherapy has already been established as an exciting and potentially highly effective treatment option for various types of cancer, one important challenge remains—stimulate antitumor immunity of primary T cells in vivo.
To tackle this issue, scientists at Ohio State University developed nanotechnology to boost activation of T cells at the cancer tumor site in a way that improved their interactions with an antibody therapy undergoing clinical trial testing. The study, which was conducted in mouse models of cancer, was published in the journal Nature Communications (2021; https://doi.org/10.1038/s41467-021-27434-x).
The research was led by the Dong lab, which has long focused on nanoparticle delivery of messenger RNA (mRNA) as a therapeutic strategy. In the current study, the team hypothesized that delivery of costimulatory receptor mRNA to tumor-infiltrating T cells would enhance the antitumor effects of antibodies while lowering the chances for whole-body side effects.
To explore nanoparticles for delivering mRNA into T cells, the investigators designed and synthesized a library of phospholipid and glycolipid derivatives (PLs and GLs) and used these materials to devise biomimetic nanoparticles for mRNA delivery. The team chose to utilize the phospholipid-derived nanoparticle, PL1, to deliver the costimulatory receptor mRNA.
Next, the researchers loaded the nanoparticle cargo: (mRNA) carrying instructions to produce molecules that T cells express as part of their immune system function. The researchers injected these nanoparticles directly into the tumor site in mouse models of specific cancers, which entered tumor-infiltrating T cells to generate and amplify specific receptors on their surfaces enabling additional functions, including proliferation, recruitment of other immune cells, and production of helpful proteins.
The team waited 6 hours until the cells produced enough receptors and then injected antibodies into the tumors. The combination of PL1-OX40 mRNA and anti-OX40 antibody demonstrated significantly improved antitumor activity compared to anti-OX40 antibody alone in multiple tumor models. Tests of the combined treatment regimen produced the best results in mouse models of melanoma and B-cell lymphoma. Experimental monoclonal antibodies delivered 6 hours later could then bind to those receptors on T cells which triggered their cancer cell-killing functions. The nanoparticle and antibody delivery eliminated tumors in 60 percent of the mice—a significantly better outcome than treatment with the antibody alone. Moreover, the immune response enhancement had a lasting effect: lymphoma cells injected later into the treated tumor-free mice were unable to survive long enough to form tumors.
The new nanotechnology was effective in melanoma as well. When the team supplemented the combination treatment with the two additional antibodies that disrupt cancer cells’ ability to block the immune response, the approach resulted in a 50 percent complete response in the mice and protection against a later tumor rechallenge.
Oncology Times reached out to senior author, Yizhou Dong, PhD, for additional insights into their study. Dong is Associate Professor in the Division of Pharmaceutics and Pharmacology of the College of Pharmacy at The Ohio State University. His research focuses on the design and development of biotechnology platforms for the treatment of genetic disorders, infectious diseases, and cancers.
Oncology Times: A great number of nanoformulations have been reported as drug delivery systems to be applied in cancer treatment. What was the rationale for the design of this system?
Dong: “Phospholipids and glycolipids are natural components of the cell membrane. Taking advantage of this unique characteristic of these two types of lipids, we designed a library of phospholipid and glycolipid biomimetic materials (PL and GL lipids) to improve mRNA delivery. These PL and GL lipids are composed of a biomimetic head (phosphate head or glyco head), an ionizable amino core, and multiple hydrophobic tails. Their ionizable property makes them neutral at physiological pH and becomes positively charged at low pH.”
Oncology Times: What were some of the factors which posed challenges in the development of the nanoparticle delivery system of messenger RNA? What strategies were employed to surmount these challenges?
Dong: “Effective and safe delivery of mRNA remains the key challenge for clinical translation of nanoparticle formulations. We mimic nature using chemical structures such as phospholipid, glycolipid, and many other molecules from mammalian cells. By systematic exploration and optimization of the formulations, we can match delivery systems with therapeutic indications.”
Oncology Times: What are the potential clinical implications of the findings of this study?
Dong: “In this work, we developed a phospholipid-derived nanoparticle to deliver OX40 or CD137 mRNA to T cells in the tumor microenvironment, which enhances the efficacy of agonistic antibody therapy in preclinical tumor models. This treatment strategy is compatible with multiple administration routes and works in synergy with checkpoint inhibitors, demonstrating the broad applicability of this treatment regimen under diverse therapeutic situations. Additionally, the results lay a solid foundation for the exploration of more effective combinations using costimulatory receptors and agonistic antibodies for cancer immunotherapy.”
Oncology Times: Nanotechnology targets cancer cells more exactly to spare healthy tissues. Are there any possible side effects of nanotechnology for cancer?
Dong: “Many strategies have been investigated to improve the targeting efficiency of cancer cells. Different from direct targeting cancer cells, we aim to modulate T cells in the tumor microenvironment using nanoparticles delivering mRNA encoding costimulatory receptors in combination with the corresponding agonistic antibody as a strategy to enhance cancer immunotherapy.”
News
Microplastics in the bloodstream may pose hidden risks to brain health
In a recent study published in the journal Science Advances, researchers investigated the impact of microplastics on blood flow and neurobehavioral functions in mice. Using advanced imaging techniques, they observed that microplastics obstruct cerebral blood [...]
AI Surveillance: New Study Exposes Hidden Risks to Your Privacy
A new mathematical model enhances the evaluation of AI identification risks, offering a scalable solution to balance technological benefits with privacy protection. AI tools are increasingly used to track and monitor people both online [...]
Permafrost Thaw: Unleashing Ancient Pathogens and Greenhouse Gases
Permafrost is a fascinating yet alarming natural phenomenon. It refers to ground that remains frozen for at least two consecutive years. Mostly found in polar regions like Siberia, Alaska, and Canada, permafrost plays a [...]
Frequent social media use tied to higher levels of irritability
A survey led by researchers from the Center for Quantitative Health at Massachusetts General Hospital and Harvard Medical School has analyzed the association between self-reported social media use and irritability among US adults. Frequent [...]
Australian oysters’ blood could hold key to fighting drug-resistant superbugs
Protein found in Sydney rock oysters’ haemolymph can kill bacteria and boost some antibiotics’ effectiveness, scientists discover An antimicrobial protein found in the blood of an Australian oyster could help in the fight against [...]
First U.S. H5N1 Death Sparks Urgency: Scientists Warn Bird Flu Is Mutating Faster Than Expected
A human strain of H5N1 bird flu isolated in Texas shows mutations enabling better replication in human cells and causing more severe disease in mice compared to a bovine strain. While the virus isn’t [...]
AI Breakthrough in Nanotechnology Shatters Limits of Precision
At TU Graz, a pioneering research group is leveraging artificial intelligence to drastically enhance the way nanostructures are constructed. They aim to develop a self-learning AI system that can autonomously position molecules with unprecedented precision, potentially [...]
How Missing Sleep Lets Bad Memories Haunt Your Mind
Research reveals that a lack of sleep can hinder the brain’s ability to suppress unwanted memories and intrusive thoughts, emphasizing the importance of restful sleep for mental health. Sleep deprivation has been found to [...]
WHO issues new warning over ‘mystery virus’ and calls for return of COVID restrictions
The World Health Organization (WHO) has called for the reinstatement of restrictions implemented during the COVID-19 pandemic as cases of human metapneumovirus (HMPV) continue to surge. While hospitals in China are overwhelmed with positive [...]
A Breath Away From a Cure: How Xenon Gas Could Transform Alzheimer’s Treatment
A breakthrough study highlights Xenon gas as a potential game-changer in treating Alzheimer’s disease, demonstrating its ability to mitigate brain damage and improve cognitive functions in mouse models. A forthcoming clinical trial aims to test its [...]
False Memories Under Fire: Surprising Science Behind What We Really Recall
New research challenges the ease of implanting false memories, highlighting flaws in the influential “Lost in the Mall” study. By reexamining the data from a previous study, researchers found that many supposed false memories [...]
Born Different? Cambridge Scientists Uncover Innate Sex Differences in Brains
Cambridge researchers found that sex differences in brain structure exist from birth, with males having more white matter and females more grey matter, highlighting early neurodiversity. Research from the Autism Research Centre at the University [...]
New study shows risk factors for dementia – virus causes deposits in the brain
Research into the causes of Alzheimer's is not yet complete. Now a new study shows that head trauma can activate herpes viruses and promote the disease. Frankfurt am Main – As a neurodegenerative disease, [...]
Are Machines Truly Thinking? Modern AI Systems Have Finally Achieved Turing’s Vision
Modern AI systems have fulfilled Turing’s vision of machines that learn and converse like humans, but challenges remain. A new paper highlights concerns about energy consumption and societal inequality while calling for more robust [...]
The Surprising Link Between Smell, Sound, and Emotions
New research reveals how smell and hearing interact in the brain to drive social behavior, using mouse maternal instincts as a model. Imagine you’re at a dinner party, but you can’t smell the food [...]
Brain cells age at different rates
As our body ages, not only joints, bones and muscles wear out, but also our nervous system. Nerve cells die, are no longer fully replaced, and the brain shrinks. "Aging is the most important risk factor [...]