Conventional cancer therapies risk causing damage to healthy tissue while working to destroy cancer cells. Researchers are developing novel therapeutics based on nanotechnology to overcome this limitation, as well as to improve the pharmacokinetics of a pharmaceutical and reduce the related toxicities (Nat Rev Drug Discov 2021; https://doi.org/10.1038/s41573-020-0090-8).
Another encouraging area of nanotechnology in oncology is its use in enhancing immunotherapy (Nanoscale 2019; doi: 10.1039/c9nr05371a). T cells are important fighters in an immune response, and T cell-based immunotherapy of cancer is a rapidly developing field. While immunotherapy has already been established as an exciting and potentially highly effective treatment option for various types of cancer, one important challenge remains—stimulate antitumor immunity of primary T cells in vivo.
To tackle this issue, scientists at Ohio State University developed nanotechnology to boost activation of T cells at the cancer tumor site in a way that improved their interactions with an antibody therapy undergoing clinical trial testing. The study, which was conducted in mouse models of cancer, was published in the journal Nature Communications (2021; https://doi.org/10.1038/s41467-021-27434-x).
The research was led by the Dong lab, which has long focused on nanoparticle delivery of messenger RNA (mRNA) as a therapeutic strategy. In the current study, the team hypothesized that delivery of costimulatory receptor mRNA to tumor-infiltrating T cells would enhance the antitumor effects of antibodies while lowering the chances for whole-body side effects.
To explore nanoparticles for delivering mRNA into T cells, the investigators designed and synthesized a library of phospholipid and glycolipid derivatives (PLs and GLs) and used these materials to devise biomimetic nanoparticles for mRNA delivery. The team chose to utilize the phospholipid-derived nanoparticle, PL1, to deliver the costimulatory receptor mRNA.
Next, the researchers loaded the nanoparticle cargo: (mRNA) carrying instructions to produce molecules that T cells express as part of their immune system function. The researchers injected these nanoparticles directly into the tumor site in mouse models of specific cancers, which entered tumor-infiltrating T cells to generate and amplify specific receptors on their surfaces enabling additional functions, including proliferation, recruitment of other immune cells, and production of helpful proteins.
The team waited 6 hours until the cells produced enough receptors and then injected antibodies into the tumors. The combination of PL1-OX40 mRNA and anti-OX40 antibody demonstrated significantly improved antitumor activity compared to anti-OX40 antibody alone in multiple tumor models. Tests of the combined treatment regimen produced the best results in mouse models of melanoma and B-cell lymphoma. Experimental monoclonal antibodies delivered 6 hours later could then bind to those receptors on T cells which triggered their cancer cell-killing functions. The nanoparticle and antibody delivery eliminated tumors in 60 percent of the mice—a significantly better outcome than treatment with the antibody alone. Moreover, the immune response enhancement had a lasting effect: lymphoma cells injected later into the treated tumor-free mice were unable to survive long enough to form tumors.
The new nanotechnology was effective in melanoma as well. When the team supplemented the combination treatment with the two additional antibodies that disrupt cancer cells’ ability to block the immune response, the approach resulted in a 50 percent complete response in the mice and protection against a later tumor rechallenge.
Oncology Times reached out to senior author, Yizhou Dong, PhD, for additional insights into their study. Dong is Associate Professor in the Division of Pharmaceutics and Pharmacology of the College of Pharmacy at The Ohio State University. His research focuses on the design and development of biotechnology platforms for the treatment of genetic disorders, infectious diseases, and cancers.
Oncology Times: A great number of nanoformulations have been reported as drug delivery systems to be applied in cancer treatment. What was the rationale for the design of this system?
Dong: “Phospholipids and glycolipids are natural components of the cell membrane. Taking advantage of this unique characteristic of these two types of lipids, we designed a library of phospholipid and glycolipid biomimetic materials (PL and GL lipids) to improve mRNA delivery. These PL and GL lipids are composed of a biomimetic head (phosphate head or glyco head), an ionizable amino core, and multiple hydrophobic tails. Their ionizable property makes them neutral at physiological pH and becomes positively charged at low pH.”
Oncology Times: What were some of the factors which posed challenges in the development of the nanoparticle delivery system of messenger RNA? What strategies were employed to surmount these challenges?
Dong: “Effective and safe delivery of mRNA remains the key challenge for clinical translation of nanoparticle formulations. We mimic nature using chemical structures such as phospholipid, glycolipid, and many other molecules from mammalian cells. By systematic exploration and optimization of the formulations, we can match delivery systems with therapeutic indications.”
Oncology Times: What are the potential clinical implications of the findings of this study?
Dong: “In this work, we developed a phospholipid-derived nanoparticle to deliver OX40 or CD137 mRNA to T cells in the tumor microenvironment, which enhances the efficacy of agonistic antibody therapy in preclinical tumor models. This treatment strategy is compatible with multiple administration routes and works in synergy with checkpoint inhibitors, demonstrating the broad applicability of this treatment regimen under diverse therapeutic situations. Additionally, the results lay a solid foundation for the exploration of more effective combinations using costimulatory receptors and agonistic antibodies for cancer immunotherapy.”
Oncology Times: Nanotechnology targets cancer cells more exactly to spare healthy tissues. Are there any possible side effects of nanotechnology for cancer?
Dong: “Many strategies have been investigated to improve the targeting efficiency of cancer cells. Different from direct targeting cancer cells, we aim to modulate T cells in the tumor microenvironment using nanoparticles delivering mRNA encoding costimulatory receptors in combination with the corresponding agonistic antibody as a strategy to enhance cancer immunotherapy.”

News
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]
The world’s first AI Hospital, developed in China is transforming healthcare
Artificial Intelligence and its developments have had a revolutionary impact on society, and healthcare is not an exception. China has made massive strides in AI integrated healthcare, and continues to do so as AI [...]
Scientists Rewire Immune Cells To Supercharge Cancer-Fighting Power
Blocking a single protein boosts T cell metabolism and tumor-fighting strength. The discovery could lead to next-generation cancer immunotherapies. Scientists have identified a strategy to greatly enhance the cancer-fighting abilities of the immune system’s [...]