A recent study published in Small addresses the persistent difficulty of treating refractory melanoma, an aggressive form of skin cancer that often does not respond to existing therapies.
Although diagnostic tools and immunotherapies have improved in recent years, a substantial number of patients remain unresponsive to current treatment options, highlighting the need for alternative therapeutic approaches.
Image Credit: New Africa/Shutterstock.com
The researchers in this study explore a strategy that combines intracellular stress targeting with immune modulation.
Specifically, they investigate the co-administration of two hydrophobic drugs: copper diethyldithiocarbamate (CuET), which inhibits the p97-UFD1-NPL4 protein complex to induce endoplasmic reticulum (ER) stress and promote cytotoxicity; and 6-bromo-indirubin-3′-oxime (BIO), a GSK3 inhibitor that can influence inflammatory pathways and tumor cell growth.
Background
Melanoma becomes particularly difficult to treat once it develops resistance to standard therapies. Tumor cells can avoid immune detection and resist cell death mechanisms, reducing the effectiveness of many treatments. This study focuses on targeting both cellular stress pathways and immune checkpoints as a dual approach.
CuET disrupts protein degradation by inhibiting the p97-UFD1-NPL4 complex, leading to ER stress and apoptosis, especially in cancer cells already under stress. BIO, as a GSK3 inhibitor, affects β-catenin signaling and the production of inflammatory cytokines, which can help reshape the tumor microenvironment to enhance immune recognition.
Because both CuET and BIO are hydrophobic, systemic delivery is a challenge. To address this, the researchers developed liposome-polymer nanoparticles (LPNs) capable of encapsulating the drugs, improving their solubility, delivery precision, and release control.
The Current Study
The research included both in vitro and in vivo experiments to evaluate the drug delivery system. The team first established the optimal molar ratio of CuET to BIO using several melanoma cell lines, including B16F10 and YUMM1.7, along with their variants.
The drugs were co-loaded into LPNs made from phospholipids and stabilized with poly(vinylpyrrolidone), which improved their compatibility in aqueous environments. Particle size, surface charge, encapsulation efficiency, and stability were analyzed using dynamic light scattering and electron microscopy.
Cellular uptake and cytotoxicity were assessed using viability assays (including the sulforhodamine B method) in both two-dimensional cell cultures and three-dimensional tumor spheroids. Additional analyses (such as immunofluorescence, Western blotting, and flow cytometry) were used to track changes in β-catenin levels, immune marker expression, and T cell activation.
In vivo, the LPNs were tested in mouse models of melanoma, again using the B16F10 and YUMM1.7 cell lines, which exhibit features of therapy-resistant disease. Tumor growth, metastasis, and treatment-related toxicity were monitored through imaging, histological evaluation, and blood analysis.
Results and Discussion
The co-loaded nanoparticles demonstrated consistent particle size (100–150 nm), high encapsulation efficiency, and stability under physiological conditions. In vitro, the combination therapy showed a greater reduction in melanoma cell viability than either drug alone, indicating a synergistic cytotoxic effect.
One notable finding was BIO’s ability to counteract the accumulation of β-catenin induced by CuET. This suggests that the drug pair can modulate intracellular signaling in a way that may limit tumor proliferation and reduce metastatic potential. The combination also increased markers of ER stress and apoptosis, supporting the idea that the two drugs operate through complementary mechanisms.
Beyond direct effects on tumor cells, the study also examined the immune-related impact of the treatment. The combination therapy led to reduced expression of PD-L1 on tumor cells, potentially improving immune cell recognition. Flow cytometry revealed increased levels of immune activation markers such as CD69, along with changes in PD-1 expression on T cells. CuET alone increased PD-1 levels, a response that was moderated by the addition of BIO.
CuET was also found to suppress IL-2 secretion from activated T cells, directly influencing immune cell function. These results suggest that the therapy engages both tumor-intrinsic and immune-modulatory pathways, contributing to a more comprehensive anti-tumor response.
In vivo, treatment with the liposome-polymer nanoparticles led to a significant decrease in tumor size—about 47 % in B16F10 models and over 75 % in YUMM1.7 models. Importantly, this effect was achieved without significant toxicity. Mice maintained stable body weight, and blood and histological analyses showed no signs of liver or kidney damage.
Overall, the findings support the use of this nanocarrier system for delivering hydrophobic drug combinations, offering effective tumor suppression with a favorable safety profile.
Conclusion
This study presents a liposome-polymer nanoparticle system designed to deliver CuET and BIO in combination as a potential treatment for resistant melanoma. The formulation demonstrated stability, effective tumor suppression in vitro and in vivo, and a favorable safety profile.
By targeting ER stress, β-catenin signaling, and immune checkpoint pathways, the approach offers a multi-faceted therapeutic option for melanoma that has not responded to existing treatments.
Further research may explore the use of similar delivery systems for other drug combinations, particularly in cancers where treatment resistance remains a significant challenge.
Journal Reference
Paun R. A., et al. (2025). Liposome-Polymer Nanoparticles Loaded with Copper Diethyldithiocarbamate and 6-Bromo-Indirubin-3′-Oxime Enable the Treatment of Refractive Melanoma. Small, DOI: 10.1002/smll.202409012, https://onlinelibrary.wiley.com/doi/10.1002/smll.202409012

News
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]
Breakthrough Blood Test Detects Head and Neck Cancer up to 10 Years Before Symptoms
Mass General Brigham’s HPV-DeepSeek test enables much earlier cancer detection through a blood sample, creating a new opportunity for screening HPV-related head and neck cancers. Human papillomavirus (HPV) is responsible for about 70% of [...]
Study of 86 chikungunya outbreaks reveals unpredictability in size and severity
The symptoms come on quickly—acute fever, followed by debilitating joint pain that can last for months. Though rarely fatal, the chikungunya virus, a mosquito-borne illness, can be particularly severe for high-risk individuals, including newborns and older [...]
Tiny Fat Messengers May Link Obesity to Alzheimer’s Plaque Buildup
Summary: A groundbreaking study reveals how obesity may drive Alzheimer’s disease through tiny messengers called extracellular vesicles released from fat tissue. These vesicles carry lipids that alter how quickly amyloid-β plaques form, a hallmark of [...]
Ozone exposure weakens lung function and reshapes the oral microbiome
Scientists reveal that short-term ozone inhalation doesn’t just harm the lungs; it reshapes the microbes in your mouth, with men facing the greatest risks. Ozone is a toxic environmental pollutant with wide-ranging effects on [...]
New study reveals molecular basis of Long COVID brain fog
Even though many years have passed since the start of the COVID-19 pandemic, the effects of infection with SARS-CoV-2 are not completely understood. This is especially true for Long COVID, a chronic condition that [...]
Scientists make huge Parkinson’s breakthrough as they discover ‘protein trigger’
Scientists have, for the first time, directly visualised the protein clusters in the brain believed to trigger Parkinson's disease, bringing them one step closer to potential treatments. Parkinson's is a progressive incurable neurological disorder [...]