NanoApps Medical is investigating the possibility that superparamagnetic nanoparticles (SPIONs) and other classes of nanoparticles (e.g., gold coated nanoshells) might have the capacity to target cancerous tumors, metastasizing cancer cells, pathogens, etc. to deactivate/eliminate them via hypothermia.

This means that once the nanoparticles are adhered to their targets, they would be heated by an external source (a magnetic field in the case of SPIONs, and near-infrared laser light in the case of gold nanoshells) to inflict irreversible thermal damage to these entities through the catastrophic disruption of their cell membranes.

Additionally, gold nanoshells may be synthesized to be hollow, which means that they might be loaded with powerful drugs to impart a dual activity against their targets. A further advantage of this strategy is that the “collateral damage” to surrounding healthy cells will be minimized as the thermal “blast zones” and drug delivery would be highly localized, in stark contrast to conventional chemotherapies that flood the patient with toxic chemicals.

Read more

Image Credit:   Alias Studio Sydney

News This Week

Stem Cell Membrane-Coated Nanoparticles in Tumor Therapy

Cell membrane-coated nanoparticles, applied in targeted drug delivery strategies, combine the intrinsic advantages of synthetic nanoparticles and cell membranes. Although stem cell-based delivery systems were highlighted for their targeting capability in tumor therapy, inappropriate [...]

Self-Healable, Human-Like Artificial Skin

Self-healable ionic sensing materials with fatigue resistance are imperative in robotics and soft electronics for extended service life. The existing artificial ionic skins with self-healing capacity were prepared by network reconfiguration, constituting low-energy amorphous [...]