University of Toronto Engineering researchers have built a set of magnetic ‘tweezers’ that can position a nano-scale bead inside a human cell in three dimensions with unprecedented precision. The nano-bot has already been used to study the properties of cancer cells, and could point the way toward enhanced diagnosis and treatment.

Professor Yu Sun and his team have been building robots that can manipulate individual cells for two decades. Their creations have the ability to manipulate and measure single cells — useful in procedures such as in vitro fertilization and personalized medicine. Their latest study, published today in Science Robotics, takes the technology one step further.

“So far, our robot has been exploring outside a building, touching the brick wall, and trying to figure out what’s going on inside,” says Sun. “We wanted to deploy a robot in the building and probe all the rooms and structures.”

The team has created robotic systems that can manipulate sub-cellular structures inside electron microscopes, but that requires freeze-drying the cells and cutting them into tiny slices. To probe live cells, other teams have used techniques such as lasers or acoustics.

“Optical tweezers — using lasers to probe cells — is a popular approach,” says Xian Wang, the PhD candidate who conducted the research. The technology was honoured with 2018 Nobel Prize in Physics, but Wang says the force that it can generate is not large enough for mechanical manipulation and measurement he wanted to do.

“You can try to increase the power to generate higher force, but you run the risk of damaging the sub-cellular components you’re trying to measure,” says Wang.

Image Credit:  Roberto Frankenberg

Thanks to Heinz V. Hoenen.  Follow him on twitter: @HeinzVHoenen

Read more at sciencedaily.com

News This Week

A ‘cancer lab’ on chip

Finding out you have cancer is bad enough, but to then have to go to hospital for a painful and invasive biopsy to try to identify the exact type of tumor can be deeply [...]

Nanoparticles Heal Spinal Cord Injuries

The zealous immune response to injuries is known to cause paralyzing damage in spinal cord injury (SCI). Engineers have now created unique nanoparticles that redirect immune cells away from the spinal cord, promoting regeneration [...]