Prof. Dr. Matthias Karg’s group “Colloids and Nanooptics” at the Institute of Physical Chemistry has developed a simple yet precise method for producing extremely ordered particle layers. The group is using miniature, soft and deformable spherical polymer beads with a hydrogel-like structure. Hydrogels are basically water swollen, three-dimensional systems. For instance, hydrogels are commonly found in babies’ nappies as super-absorbers with the ability to soak up large quantities of liquids.

Inside these hydrogel beads are minute silver or gold particles, merely a few nanometers in size, which Karg’s team synthesized at Heinrich-Heine University (HHU) using metal salts in a reduction process. “We can adjust the size of the gold particles very precisely, because the hydrogel shells are permeable to dissolved metal salts, allowing for successive overgrowth of the gold cores.” The structure of these core-shell particles can be approximately compared with that of a cherry, where a hard core is enclosed by soft pulp. However, the particles from the lab are approximately one hundred thousand times smaller.

The scientists based at Duesseldorf can then utilize a dilute solution of these hydrogel beads to create thin monolayers. They apply the beads to a water surface, where an extremely ordered and colorfully shimmering layer self-assembles. They move this layer from the water surface onto glass substrates. This transfer makes the whole glass substrate shimmer.

Image Credit:  HHU/Christoph Kawan

Read more at azonano.com

News This Week

Innovations in Nanocomposites: A Future Outlook

Nanocomposites are a class of nanomaterials, where one or more nanostructured materials (organic/inorganic) are incorporated in metal, polymer, or ceramic to obtain a new material with many unique properties. Nanocomposites are applied in various [...]

New sensor detects ever smaller nanoparticles

Conventional microscopes produce enlarged images of small structures or objects with the help of light. Nanoparticles, however, are so small that they hardly absorb or scatter light and, hence, remain invisible. Optical resonators increase [...]

How Will the COVID Pills Change the Pandemic?

From a new article By Dhruv Khullar in the New York Times: New antiviral drugs are startlingly effective against the coronavirus—if they’re taken in time. n March, 2020, researchers at Emory University published a paper about a [...]

3D printing approaches atomic dimensions

 A new 3D printing technology makes the production of complex metallic objects at the nanoscale possible. A team of chemists led by a scientist from the University of Oldenburg has developed an electrochemical technique [...]