Like our eyes, microscopes are limited in what they can see because of their resolution, or their ability to see detail. The detail, or information, from the object is there, but some of it gets lost as the light reflecting off of the object moves through the air.
“The whole premise of this is built on one single fact—the way light interacts with any matter is linear,” said Kamilov, assistant professor of electrical & systems engineering and computer science & engineering. “But the reality is that the interaction is actually not linear.”
For example, if you shine a flashlight through your hand, you can’t see the source of the light because it’s bending, and that is nonlinearity. With a single cell, the bending is so light that it is nearly transparent, which is linear.
When light interacts with a cell or an object, the light going out of the cell loses the information it gathers from that interaction. But because of that interaction, there are fluctuations in the vicinity of that cell that work with such matter and get retransformed and remitted. Those fluctuations are encoded into the nonlinearity of the interaction, but today’s microscopes are unable see this, Kamilov said.
“We want to take into account this nonlinear interaction of light, objects and premises, and if we do it correctly, we can extract that information, which normally disappears in a current microscope and is treated as ‘noise,'” Kamilov said. “We want to decode the information from the noise and add it back into the resolution, and that should give us features that are smaller than the resolution limit.”
Kamilov said there are two types of noise: imperfections and mathematical noise that is the result of science’s current limitations. It is the mathematical noise that he wants to capture.

Image Credit: Washington University in St. Louis
News This Week
Coronavirus Does Not Infect the Brain but Still Inflicts Damage
SARS-CoV-2, the virus that causes COVID-19, likely does not directly infect the brain but can still inflict significant neurological damage, according to a new study from neuropathologists, neurologists, and neuroradiologists at Columbia University Vagelos [...]
Research finds a potential new ‘silver bullet’ nanoparticle to treat brain cancer
ANSTO has contributed to a comprehensive investigation of a promising type of nanoparticle that could potentially be used for intractable brain cancers in a combined therapy. The study, which was led by Dr. Moeava [...]
Trial to study effect of immune system on Covid reinfection
The immune response needed to protect people against reinfection with the coronavirus will be explored in a new human challenge trial, researchers have revealed. Human challenge trials involve deliberately exposing healthy people to a [...]
Duke working on developing flu shot using new CoV vaccine technology
Researchers from Duke University are developing a flu shot with the new technology that was used for two coronavirus vaccines. Both the Pfizer-BioNTech and the Moderna shots use part of the virus's genetic code [...]
Long-acting injectable medicine as potential route to COVID-19 therapy
Researchers from the University of Liverpool have shown the potential of repurposing an existing and cheap drug into a long-acting injectable therapy that could be used to treat Covid-19. In a paper published in the journal Nanoscale, [...]
Superbug killer: New nanotech destroys bacteria and fungal cells
Researchers have developed a new superbug-destroying coating that could be used on wound dressings and implants to prevent and treat potentially deadly bacterial and fungal infections. The material is one of the thinnest antimicrobial [...]
US recommends ‘pause’ for J&J vaccine over clot reports
The U.S. is recommending a "pause" in administration of the single-dose Johnson & Johnson COVID-19 vaccine to investigate reports of potentially dangerous blood clots. In a joint statement Tuesday, the Centers for Disease Control [...]
S. African COVID variant better at bypassing Pfizer/BioNTech jab: Israeli study
The South African coronavirus variant is better at "breaking through" the defences of the Pfizer/BioNTech vaccine than other forms of the virus, Israeli experts said Sunday. However, one of the authors told AFP that [...]
Leave A Comment