| Something as simple as the motion of water drops on surfaces should actually be understood – one would think. In fact there are still numerous unanswered questions about the forces acting on a sliding droplet. | |
| A team of researchers from the Max Planck Institute for Polymer Research in collaboration with colleagues from TU Darmstadt has now discovered: In addition to surface energy and viscous friction within the droplet, electrostatics also play a significant role. | |
| The results were recently published in the journal Nature Physics (“Spontaneous charging affects the motion of sliding drops”). |
| Raindrops hit the car window and the wind pushes the drops to the side. Even today, no one has been able to precisely predict how the drops move on the windshield. Yet such an understanding is important in numerous areas, such as autonomous driving: For example, cameras installed in the windshield are supposed to keep an eye on the road and the traffic situation – for this, the surface of the windshield must be designed in such a way that the drops are completely blown down by the airstream and the view remains clear even in the rain. Other examples with the opposite sign are applications where drops need to stick to surfaces, such as spray paint or pesticides. | |
| “Until now, it was assumed that the surface coating was responsible for how the droplet moves on a surface – that is, the first few molecular layers,” says Prof. Hans-Jürgen Butt, who is director of the “Physics of Interfaces” department at the Max Planck Institute for Polymer Research. | |
| For example, it depends on the surface whether a spherical or a flat droplet shape is formed. If the drop likes the surface, it presses itself flat onto it to make as much contact as possible. If it does not like the surface, as in the case of the well-known lotus effect, it curls up. It was also clear that when a droplet moves, viscous friction – i.e. friction between the individual water molecules – occurs within the droplet, which also influences its movement. | |
Electrostatics cause differences in velocity |
|
| The team of researchers at the MPI for Polymer Research found that neither capillary nor viscoelastic forces can explain the differences in the speed at which droplets move across different surfaces. Questions were raised in particular by the fact that the droplets run at different speeds on different substrates – even if these substrates have an identical surface coating, where no differences would be expected. | |
| The researchers therefore first introduced a mysterious “extra force.” To track it down, Xiaomei Li, a Ph.D. student in Hans-Jürgen Butt’s department, organized a drop race. “I filmed the drops on different substrates, extracted velocity and acceleration profiles from their motion, calculated out the forces that were already known to calculate the force that we had not yet had a look at,” she explains. | |
| The astonishing result: the calculated force agrees with an electrostatic force that the researchers first described in a model a few years ago. “By comparing the experimental results with this numerical model, we can explain previously confusing droplet trajectories,” says Jun.-Prof. Stefan Weber, a group leader in Butt’s department. | |
| If previously neutral droplets slide over an insulator, they can become electrically charged: So electrostatics plays a significant role there. On an electrically conductive substrate, on the other hand, the droplet immediately releases its charge back to the substrate. | |
| “The electrostatic force, which no one had previously considered, therefore has a major influence: it must be taken into account for water, aqueous electrolytes and ethylene glycol on all hydrophobic surfaces tested,” Weber summarizes. | |
| These results will improve the control of droplet motion in many applications ranging from printing to microfluidics or water management to power generation via droplet-based mini-generators. |
News
Sleep Deprivation Triggers a Strange Brain Cleanup
When you don’t sleep enough, your brain may clean itself at the exact moment you need it to think. Most people recognize the sensation. After a night of inadequate sleep, staying focused becomes harder [...]
Lab-grown corticospinal neurons offer new models for ALS and spinal injuries
Researchers have developed a way to grow a highly specialized subset of brain nerve cells that are involved in motor neuron disease and damaged in spinal injuries. Their study, published today in eLife as the final [...]
Urgent warning over deadly ‘brain swelling’ virus amid fears it could spread globally
Airports across Asia have been put on high alert after India confirmed two cases of the deadly Nipah virus in the state of West Bengal over the past month. Thailand, Nepal and Vietnam are among the [...]
This Vaccine Stops Bird Flu Before It Reaches the Lungs
A new nasal spray vaccine could stop bird flu at the door — blocking infection, reducing spread, and helping head off the next pandemic. Since first appearing in the United States in 2014, H5N1 [...]
These two viruses may become the next public health threats, scientists say
Two emerging pathogens with animal origins—influenza D virus and canine coronavirus—have so far been quietly flying under the radar, but researchers warn conditions are ripe for the viruses to spread more widely among humans. [...]
COVID-19 viral fragments shown to target and kill specific immune cells
COVID-19 viral fragments shown to target and kill specific immune cells in UCLA-led study Clues about extreme cases and omicron’s effects come from a cross-disciplinary international research team New research shows that after the [...]
Smaller Than a Grain of Salt: Engineers Create the World’s Tiniest Wireless Brain Implant
A salt-grain-sized neural implant can record and transmit brain activity wirelessly for extended periods. Researchers at Cornell University, working with collaborators, have created an extremely small neural implant that can sit on a grain of [...]
Scientists Develop a New Way To See Inside the Human Body Using 3D Color Imaging
A newly developed imaging method blends ultrasound and photoacoustics to capture both tissue structure and blood-vessel function in 3D. By blending two powerful imaging methods, researchers from Caltech and USC have developed a new way to [...]
Brain waves could help paralyzed patients move again
People with spinal cord injuries often lose the ability to move their arms or legs. In many cases, the nerves in the limbs remain healthy, and the brain continues to function normally. The loss of [...]
Scientists Discover a New “Cleanup Hub” Inside the Human Brain
A newly identified lymphatic drainage pathway along the middle meningeal artery reveals how the human brain clears waste. How does the brain clear away waste? This task is handled by the brain’s lymphatic drainage [...]
New Drug Slashes Dangerous Blood Fats by Nearly 40% in First Human Trial
Scientists have found a way to fine-tune a central fat-control pathway in the liver, reducing harmful blood triglycerides while preserving beneficial cholesterol functions. When we eat, the body turns surplus calories into molecules called [...]
A Simple Brain Scan May Help Restore Movement After Paralysis
A brain cap and smart algorithms may one day help paralyzed patients turn thought into movement—no surgery required. People with spinal cord injuries often experience partial or complete loss of movement in their arms [...]
Plant Discovery Could Transform How Medicines Are Made
Scientists have uncovered an unexpected way plants make powerful chemicals, revealing hidden biological connections that could transform how medicines are discovered and produced. Plants produce protective chemicals called alkaloids as part of their natural [...]
Scientists Develop IV Therapy That Repairs the Brain After Stroke
New nanomaterial passes the blood-brain barrier to reduce damaging inflammation after the most common form of stroke. When someone experiences a stroke, doctors must quickly restore blood flow to the brain to prevent death. [...]
Analyzing Darwin’s specimens without opening 200-year-old jars
Scientists have successfully analyzed Charles Darwin's original specimens from his HMS Beagle voyage (1831 to 1836) to the Galapagos Islands. Remarkably, the specimens have been analyzed without opening their 200-year-old preservation jars. Examining 46 [...]
Scientists discover natural ‘brake’ that could stop harmful inflammation
Researchers at University College London (UCL) have uncovered a key mechanism that helps the body switch off inflammation—a breakthrough that could lead to new treatments for chronic diseases affecting millions worldwide. Inflammation is the [...]















