Molecular biology’s central dogma posits a simple recipe for the construction of the human body: a DNA blueprint is transcribed into an RNA message, and the RNA message is translated into the proteins that make you. Translating the mRNA message is a bit like an assembly line.
The magnitude of protein production varies wildly by the protein, the type of cell in which it is produced, and what that cell is doing at that moment in time. A type of protein notable for incredibly high production is the antibody family, which must be rapidly generated in high quantities to fight infection.
The work of protein production is stressful for cells, and the antibody-producing B cells are known to undergo metabolic shifts to support antibody secretion.
Sophie Giguere, an immunology student at Harvard Medical School who recently completed her Ph.D. in the Batista lab at the Ragon Institute, had another question: in simple organisms, and for certain proteins in more complex, multi-cellular organisms, high levels of production are associated with unusual patterns of codon use. How do antibodies compare?
Dr. Giguere’s interest in immunology, and in the antibody-producing B cells, was driven by her appreciation for the role vaccines play in public health. It was the intellectual ferment of Cambridge’s technology hub, however, that drove her interest in codon bias in immune cells. “My really good friend from undergrad was working on alternate genetic codes…. At the same time, I had just heard a lecture on T cell differentiation and started wondering if codon bias could vary across different cell states.”
Her bioinformatic dive revealed a peculiar quirk of antibody sequences: they frequently use codons without a “matching” tRNA in the genome.
The problem of codons with no apparent decoding mechanism was an early puzzle in genetics, and Francis Crick, one of the discoverers of the DNA helix, proposed quite early that this could be solved by tRNA “wobble”—a capacity to translate multiple codons that is now a well-known quirk of genetics.
Which codons tRNAs can translate are affected by chemical modifications to those tRNAs; Dr. Giguere found one particular modification known as a “super-wobbler,” inosine (I34), at higher rates in plasma cells—which produce high levels of antibodies.
There are 64 possible codon combinations and only 20 amino acids are used in human proteins. Since multiple codons can encode the same amino acid, Dr. Giguere genetically engineered cell lines to replace codons that require I34 with codons that do not, but encode the same amino acid—editing the instructions but making the same protein.
She found that antibody-producing cells were more efficient than non-antibody-producing cells when it came to translating I34-dependent codons. When she looked at mice with B cell receptors (essentially membrane-bound antibodies) that were identical as proteins but encoded differently, Dr. Giguere observed that B cells expressing more I34-dependant receptors seemed to be more likely to survive.
“It was surprising to me; the most common codons used in human antibody heavy chains, over and over, were ones with no corresponding tRNA gene in the genome,” says Prof. Facundo D. Batista, Ph.D., Associate and Scientific Director of the Ragon Institute and Dr. Giguere’s Ph.D. mentor. “I have worked on B cell receptors my entire career, and I had never considered this angle. Every immunologist I spoke to shared a similar reaction.”
The practical implications are immense: antibody production for laboratory and therapeutic use is an enormous industry, and antibodies are the key mediators of vaccine efficacy. Prof. Batista says, “I spend a lot of time working on which antibodies we want rationally designed vaccines to elicit: now, I will consider how those antibodies are encoded.”
The work is published in the journal Science.
More information: Sophie Giguère et al, Antibody production relies on the tRNA inosine wobble modification to meet biased codon demand, Science (2024). DOI: 10.1126/science.adi1763
News
Inside the Nano-Universe: New 3D X-Ray Imaging Transforms Material Science
A cutting-edge X-ray method reveals the 3D orientation of nanoscale material structures, offering fresh insights into their functionality. Researchers at the Swiss Light Source (SLS) have developed a groundbreaking technique called X-ray linear dichroic orientation tomography [...]
X-chromosome study reveals hidden genetic links to Alzheimer’s disease
Despite decades of research, the X-chromosome’s impact on Alzheimer’s was largely ignored until now. Explore how seven newly discovered genetic loci could revolutionize our understanding of the disease. Conventional investigations of the genetic contributors [...]
The Unresolved Puzzle of Long COVID: 30% of Young People Still Suffer After Two Years
A UCL study found that 70% of young people with long Covid recovered within 24 months, but recovery was less likely among older teenagers, females, and those from deprived backgrounds. Researchers emphasized the need [...]
Needle-Free: New Nano-Vaccine Effective Against All COVID-19 Variants
A new nano-vaccine developed by TAU and the University of Lisbon offers a needle-free, room-temperature-storable solution against COVID-19, targeting all key variants effectively. Professor Ronit Satchi-Fainaro’s lab at Tel Aviv University’s Faculty of Medical and [...]
Photoacoustic PDA-ICG Nanoprobe for Detecting Senescent Cells in Cancer
A study in Scientific Reports evaluated a photoacoustic polydopamine-indocyanine green (PDA-ICG) nanoprobe for detecting senescent cells. Senescent cells play a role in tumor progression and therapeutic resistance, with potential adverse effects such as inflammation and tissue [...]
How Dysregulated Cell Signaling Causes Disease
Cell signaling is crucial for cells to communicate and function correctly. Disruptions in these pathways, caused by genetic mutations or environmental factors, can lead to uncontrolled cell growth, improper immune responses, or errors in [...]
Scientists Develop Super-Strong, Eco-Friendly Plastic That Bacteria Can Eat
Researchers at the Weizmann Institute have developed a biodegradable composite material that could play a significant role in addressing the global plastic waste crisis. Billions of tons of plastic waste clutter our planet. Most [...]
Building a “Google Maps” for Biology: Human Cell Atlas Revolutionizes Medicine
New research from the Human Cell Atlas offers insights into cell development, disease mechanisms, and genetic influences, enhancing our understanding of human biology and health. The Human Cell Atlas (HCA) consortium has made significant [...]
Bioeconomic Potential: Scientists Just Found 140 Reasons to Love Spider Venom
Researchers at the LOEWE Centre for Translational Biodiversity Genomics (TBG) have discovered a significant diversity of enzymes in spider venom, previously overshadowed by the focus on neurotoxins. These enzymes, found across 140 different families, [...]
Quantum Algorithms and the Future of Precision Medicine
Precision medicine is reshaping healthcare by tailoring treatments to individual patients based on their unique genetic, environmental, and lifestyle factors. At the forefront of this revolution, the integration of quantum computing and machine learning [...]
Scientists Have Discovered a Simple Supplement That Causes Prostate Cancer Cells To Self-Destruct
Menadione, a vitamin K precursor, shows promise in slowing prostate cancer in mice by disrupting cancer cell survival processes, with potential applications for human treatment and myotubular myopathy therapy. Prostate cancer is a quiet [...]
Scientists reveal structural link for initiation of protein synthesis in bacteria
Within a cell, DNA carries the genetic code for building proteins. To build proteins, the cell makes a copy of DNA, called mRNA. Then, another molecule called a ribosome reads the mRNA, translating it [...]
Vaping Isn’t Safe: Scientists Uncover Alarming Vascular Risks
Smoking and vaping impair vascular function, even without nicotine, with the most significant effects seen in nicotine-containing e-cigarettes. Researchers recommend avoiding both for better health. Researchers have discovered immediate impacts of cigarette and e-cigarette [...]
Twice-Yearly Lenacapavir for PrEP Reduces HIV Infections by 96%
Twice-yearly injections of the capsid inhibitor drug lenacapavir can prevent the vast majority of HIV infections, according to a Phase 3 clinical trial published Wednesday in the New England Journal of Medicine. HIV pre-exposure [...]
Did Social Distancing Begin 6,000 Years Ago? Neolithic Villagers May Have Invented It
Social distancing may have roots 6,000 years ago, as research shows Neolithic villages like Nebelivka used clustered layouts to control disease spread. The phrase “social distancing” became widely recognized in recent years as people [...]
Decoding Alzheimer’s: The Arctic Mutation’s Role in Unusual Brain Structures
Researchers have uncovered how certain genetic mutations lead to unique spherical amyloid plaques in inherited forms of Alzheimer’s, offering insights that could advance our understanding of the disease and improve therapeutic strategies. An international collaboration [...]