A tiny bristle worm, wriggling around the ocean, can extend its jaw outside its mouth to ensnare its prey. The worm’s shape-shifting jaw, stiff at the base and flexible at the end, is made of one singular material containing the mineral zinc and the amino acid histidine, which together govern the joint’s mechanical behavior through what is known as a metal coordination chemistry.
Scientists like LaShanda Korley, Distinguished Associate Professor of Materials Science and Engineeringand Chemical and Biomolecular Engineering at the University of Delaware, want to recreate these chemistries and build similar structures in synthetic materials. By doing so, they can develop new, improved materials for use in sensors, healthcare applications, and much more. Chemistries like these are ubiquitous in nature. The iron-protein interaction in human blood, for example, can be a determinant of disease.
In a paper published in the July 2019 edition of the European Polymer Journal (“Gradient supramolecular interactions and tunable mechanics in polychaete jaw inspired semi-interpenetrating networks”), Korley, joined by materials science and engineering doctoral student Chase Thompson and post-doctoral associate Sourav Chatterjee, described how they built a network of materials, made of zinc and polymers, that mimicked the mechanical gradient of a bristle worm’s jaw.

Image Credit:  University of Delaware

News This Week

The Precarious Asymmetries of Human-AI Relationships

KEY POINTS Human-AI interactions are currently asymmetrical, lacking continuity and depth. AI evolution may lead to more sustained, contextually rich user relationships. Balancing asymmetry and connection requires design advocacy and technological adaptations. As artificial intelligence (AI) [...]