A research team in Hungary pinched the coronavirus with a fine needle to measure how much force it could take before popping like a balloon.

It did not.

The native virion of Sars-CoV-2 – a complete virus particle – was only about 80 nanometres wide, and the needle tip was much smaller than that. The tip drove from the top of the virus to the bottom. The virion was squashed, then immediately rebounded as the needle left.

The researchers repeated the drill 100 times and the same viral particle remained almost intact.

It is “surprisingly resilient,” said the team led by Dr Miklos Kellermayer of Semmelweis University in Budapest in a non-peer-reviewed paper posted on biorxiv.org on Thursday.

The new coronavirus has constantly surprised scientists with its unique structure. For instance, a team from Tsinghua University in Beijing released the most detailed structural reconstruction of the virus in the journal Cell this week with the discovery that the virus could pile a large amount of nucleic acid ribbon that carries genetic data into a very tight envelope without the two becoming entangled.

Image Credit:  Handout

Post by Amanda Scott, NA CEO.  Follow her on twitter @tantriclens

Thanks to Heinz V. Hoenen.  Follow him on twitter: @HeinzVHoenen

Read the whole article

News

New Adjustments to Hyperspectral Microscopy of Nanomaterials

Hyperspectral microscopy is an advanced visualization technique that combines hyperspectral imaging with state-of-the-art optics and computer software to enable rapid identification of nanomaterials. Since hyperspectral datacubes are large, their acquisition is complicated and time-consuming. [...]

Through the quantum looking glass

An ultrathin invention could make future computing, sensing and encryption technologies remarkably smaller and more powerful by helping scientists control a strange but useful phenomenon of quantum mechanics, according to new research recently published [...]

A plastic film that can kill viruses using room lights

Graphical abstract. Credit: Journal of Photochemistry and Photobiology B: Biology (2022). DOI: 10.1016/j.jphotobiol.2022.112551 Researchers at Queen's University Belfast have developed a plastic film that can kill viruses that land on its surface with room light. The [...]

Bone formation comes down to the nanowire

Nanotechnology that accelerates the transition of stem cells into bone could advance regenerative medicine. A nanotechnology platform developed by KAUST scientists could lead to new treatments for degenerative bone diseases. The system takes advantage [...]