Early detection of the SARS-CoV-2 virus (COVID-19) is critical to stopping the spread of this contagious disease. The current diagnostic methods for COVID-19 are expensive and difficult to handle. Hence, there is a need for a quick, efficient, and user-friendly detection method.
In an article recently published in Analytica Chimica Acta, the authors fabricated a rapid and efficient nanobody-based label-free photoelectrochemical (PEC) immunosensor to detect the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) spike protein (SP)
COVID-19 Diagnostic Methods
COVID-19, caused by the SARS-CoV-2 virus, has an enveloped structure with single-stranded ribonucleic acid (ss-RNA) as its genetic material. Currently used tests to detect COVID-19, such as reverse transcription-polymerase chain reaction (RT-PCR) and computed tomography (CT) scans are expensive and time-consuming, while the immunoassay is a cost-effective and facile method. In COVID-19 patients, the highly expressed angiotensin-converting enzyme 2 (ACE2) binds to the SP on the envelope of SARS-CoV-2 and causes infection.
Immunoassay is a biochemical method used for the qualitative and quantitative determination of biomarkers specific to antigen-antibody immunoreaction. However, in the label-free immunoassay method, the results are determined by the steric hindrance effect caused by antigen-antibody immunoreaction, which hinders the photoinduced charge diffusion to the conductive matrix, thus reducing the photoelectric current. PEC immunosensor is highly sensitive, rapid, and selective in detecting COVID-19.
Niobium (Nb) can couple with a PEC immunosensor of higher density and raise a better signal-to-noise ratio than a conventional antibody. This coupling reduces the limit of detection (LOD) and increases sensitivity for antigen realization.
Novel PEC Immunoassay for COVID-19 Diagnosis
In the present study, the authors fabricated a label-free detection, Nb-based PEC immunoassay for detecting SARS-CoV-2 SP. The nanobody was immobilized based on the advantage of the surface plasma resonance (SPR) effect of gold (Au) nanoparticles and the excellent photoelectric performance of Au-deposited titanium oxide (Au@TiO2). This nanobody anchored to Nb through conjugates results in the Nb/Au@TiO2 nanoplatform. The authors have realized the goal of enhancing SP sensitivity through the Nb-based PEC immunoassay. The fabricated immunoassay platform could detect the virus even in 0.015 to 15000 picogram per milliliter concentrations.
Nb-Based PEC Immunoassay
X-Ray diffraction studies (XRD) revealed the anatase phase of TiO2. The XRD spectral peaks of Au@TiO2 showed that deposition of Au did not affect TiO2 phase behavior. Furthermore, the peaks at 38.2, 44.4, 64.6, and 77.6 degrees confirmed the successful deposition of Au on TiO2 spheres. Scanning electron microscope (SEM) images of Au@TiO2 revealed different sized spheres and stacked nanoparticles, and diffuse reflectance spectroscopy (DRS) showed strong absorbance of Au@TiO2 in a redshift of approximately 18 nanometers.
The deposition of Au on TiO2 enhanced the solar energy utilization capability. PEC measurements prove that the presence of Au restrains the recombination of carriers from bulk and surface of TiO2.
Au@TiO2 helped enhance PEC performance, predicted based on DRS characterization and PEC measurements and thus can be used to construct a label-free PEC immunosensor. Based on Nb of the SP as a recognition site, Nb was immobilized on Au@TiO2 electrode forming Nb-Au conjugates.
The construction of Nb-based PEC immunoassay used Au@TiO2 nanomaterial as base and Nb as a recognition site for SP detection with high sensitivity. The immunoreaction between SP with Nb is because of the steric hindrance effect.
The analytical performance of Au@TiO2-based PEC immunoassay for its sensitivity towards SP was predicted by conducting optimization experiments. The results showed that photocurrent response did not correlate to Au@TiO2 dispersion. However, with increased suspension concentration, SP/Bovine serum albumin (BSA)/Nb/Au@TiO2/indium tin oxide (ITO) showed a gradual increase in photocurrent. Further, a too high suspension concentration showed a decreasing trend in photoelectric current due to the recombination of Au@TiO2 nanomaterial.
The achievement of sensitive SARS-CoV-2 SP detection by Au@TiO2-based label-free PEC immunosensor involved three steps: Firstly, introducing Au and its SPR effect boosted the efficiency of photoinduced electron transmission, which led to the superior photoelectric conversion efficiency of the nanoplatform. Secondly, the disulfide bond between Nb and Au facilitated the immobilization of Nb-Au nanoparticle conjugates. Thirdly, Nb has a high affinity toward the SP, which triggers an immunoreaction resulting in immunocomplex formation on the sensing interface.
Conclusion
In this study, a label-free PEC immunoassay was developed using the Nb/Au@TiO2 nanomaterial for SARS-CoV-2 SP identification.
The deposition of Au on TiO2 led to the Au@TiO2 nanomaterial with enhanced properties, where the SPR effect of Au boosts the photoinduced electron transmission and visible light-harvesting, resulting in an enhanced photoelectric signal than sole TiO2. This nanobody-based immunosensor paves a new way for facile and rapid PEC immunoassay for COVID-19 diagnosis.
News
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]















