What makes boron-doped nanodiamonds so special? Boron-doped nanodiamonds for photocatalyis (BNDs) are a special type of diamond that has been modified with borons. They have been shown to enhance photocatalytic activation and thus increase their potential use in various fields.
Nanodiamonds as Photocatalysts
Diamond nanomaterials are promising candidates for inexpensive photocatalysts. They can be activated by light and then produce carbon-neutral “solar fuels” by speeding up certain interactions between water and CO2. This means that the particles must be exposed to direct sunlight.
The EU project DIACAT is now doping diamond materials with boron and demonstrates how this could enhance photocatalytic characteristics significantly at BESSY II.
Climate change is happening, and it will continue to occur as long as we do not achieve sufficient CO2 emission reductions. One way that we can do this is by returning greenhouse gas CO2 back into an energy cycle, namely through methanol production. However, the process requires energy and catalysts.
If we can harness the energy from sunlight and build light-active photocatalysts made of affordable and commonly available materials rather than rare metals like platinum, there is a chance that “green” solar fuels could be created in a climate-neutral manner.
Can Boron Doping help?
Diamond nanomaterials are not precious crystalline diamonds but tiny nanocrystals of a few thousand carbon atoms that are soluble in water and resemble black slurry or nanostructured carbon foams with large surface areas. They are a great potential as photocatalysts but need UV light for activation. However, this component of the solar spectrum is not very strong.
HZB-scientist Tristan Petit and his cooperation partners in DIACAT have now been working on the modeling of energy levels within such materials, which shows that intermediate stages can be built into a photovoltaic material by doping with foreign atoms.
For example, boron-doped nanodiamonds seem to play an integral role to enhance photocatalytic activation which is mostly attributable to its increased visible light absorption efficiency. Borons addition also creates semiconducting properties, which will soon open up a new class of nanodiamond electronics applications.
Properties of Nanodiamonds
Nanodiamonds are interesting carbon nanoparticles because of their unique physical and chemical properties. Their hardness is higher than other materials. Their chemical stability is better than other materials. And their thermal conductivity is extremely high. So NDs are used in lots of fields, including medicine, electronics, optics, and catalysis. They can also transport small molecules, proteins, and nucleic acids among many other treatments.
![]()
Optical Properties Of Nanodiamonds
Figure 1 shows the optical properties of the NDs.
(A) The absorption spectrum of Cu2O, NDS, NDs – Cu2O, and physical mixtures of NDs and Cu2O
(B) Scattering effect of the NDs in water
(C) Fluorescence spectra in water
(D) Excitation monitored at 450 nm emission (1) Emission at 410 nm excitation (2) Spectra of ND-ODA dispersion in dichloromethane: images of ND and ND-ODA dispersions in dichloromethane with UV (365 nm) excitation.
Application of Nanodiamonds
In the field of photocatalysis, NDs are a newly preferred catalyst compared to TiO2, g-C3N4, or others. NDs were reviewed by focusing on different applications: hydrogen production, air pollution degradation, carbon dioxide reduction, nitrogen reduction, and graphene oxide removal.
These tiny nanoparticles can also be used as antimicrobial agents for their features such as size, shape, and biocompatibility. This makes them ideal for the development of efficient and personalised nanotherapies, such as vaccinations or drug delivery systems.
Nanodiamonds in Bioimaging:
Bioimaging is an exciting area that allows noninvasive insight into the tissues and cells of living organisms to monitor metabolic processes and disease-related alterations. NDs have lately emerged as a good candidate for contrast agents when compared to other nanomaterials. NDs are ideal for bioimaging because of their tiny size, sustained fluorescence, and great biocompatibility.
The NV-center of fluorescent NDs, in particular, is an atom-like light-emitting source, and its electron spins may be detected and manipulated optically even at room temperature. Furthermore, the majority of its emission occurs in the near-infrared range, which is advantageous for biomedical imaging and diagnostics.
Nanodiamonds in Drug Delivery
The biocompatibility, water dispersibility, drug-carrying ability, and targeted therapeutic potential of a nanomaterial determine whether it is appropriate for drug delivery. NDs are modified with specific functional groups so that drugs can physically or chemically be connected to NDs for delivery.
Zhang et al. described a multicomponent NDs-based drug delivery system with simultaneous targeting, imaging, and increased therapeutic capabilities. Anti-HIV medicines based on NDs were delivered to the brain by Roy et al.
Nanodiamonds in Biosensing
A biosensor is a device that analyses biological reactions and converts them into electrical signals. A biosensor is a cutting-edge technology developed by biologists, chemists, physicists, physicians, and electronic engineers. Many advancements have been made in numerous fields since the discovery of NDs. NDs have also achieved some progress in the field of biosensors.
Nanodiamonds in Heat Therapy
Heat therapy is a way of eliminating tumour cells by heating the lesion site to different degrees depending on how sensitive tumour cells and normal cells are to heat. Heat therapy is divided into two categories.
Thermoablation with a treatment temperature control over 47 °C can cause rapid necrosis of tumour tissue under high temperatures, but it also causes harm to normal tissue and requires a complicated clinical trial; hence it is rarely used. The other is hyperthermia when the treatment temperature is kept between 42 and 46 degrees Celsius.
Numerous studies proved that nanomaterials (such as ferromagnetic nanoparticles, metallic nanoparticles, and carbon nanotubes) are capable of hyperthermia therapy for tumour treatment. However, the toxicity of each of these materials varies.
Because of their biocompatibility, NDs have been used in hyperthermia for tumour treatment. Vervald et al. investigated boron-doped NDs for hyperthermic applications in a series of research. In 2016, Vervald et al. explored the influence of boron-doped NDs on hydrogen bonding in plasmonic liquids.
They used a visible wavelength laser to irradiate the boron-doped NDs water dispersion in 2017 and discovered that the boron-doped NDs efficiently heated the surrounding water under laser irradiation.
The ability of boron-doped NDs to heat liquids under the influence of laser radiation opens up exciting possibilities for nano-reagent manufacturing in medical cancer and local thermal therapy.
Potential implications with Nanodiamonds
NDs are environmentally friendly and non-toxic materials that can be used in the design of new biomedical devices. They have remarkable mechanical, optical and fluorescent properties, which makes them highly useful when working with drug delivery or diagnosis approaches.
According to preliminary studies, NDs have the ability to modulate the immune response, which is an important feature to combat viruses. Furthermore, the diverse abilities of NDs make them an excellent candidate for improving medication administration, which, when combined with their fluorescence ability, enables drug monitoring.
Nanodiamonds provide a novel strategy for reducing the high levels of co-morbidity and mortality associated with antibiotic resistance, as well as reducing treatment costs, resulting in reduced antimicrobial resistance.
Some traits that NDs will need in future be robustness against thermochemical changes in their surroundings and permanence in the host’s “hostile environment”.
News
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]















