Artificially intelligent software has been developed to enhance medical treatments that use jets of electrified gas known as plasma. The computer code predicts the chemicals emitted by plasma devices, which can be used to treat cancer, promote healthy tissue growth and sterilize surfaces.
The plasma studied in the experiments is known as cold atmospheric plasma (CAP). When the CAP jet is turned on, numerous chemical species in the plasma take part in thousands of reactions. These chemicals modify the cells undergoing treatment in different ways, depending on the chemical composition of the jet. While scientists know that CAPs can be used to kill cancer cells, treat wounds and kill bacteria on food, it's not fully understood why.
"This research is a step toward gaining a deeper understanding of how and why CAP jets work and could also one day be used to refine their use," said Yevgeny Raitses, a managing principal research physicist at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL).
The project was completed by the Princeton Collaborative Low Temperature Plasma Research Facility (PCRF), a collaboration between researchers at PPPL and the George Washington University (GWU).
PPPL has a growing body of work that combines its 70 years of pioneering plasma research with its expertise in AI to solve societal problems. The Lab's mission extends beyond using plasma to generate fusion power to its use in fields such as medicine and manufacturing, among others.
The software uses an approach known as a physics-informed neural network (PINN). In a PINN, data is organized into parts called nodes and neurons. The flow of the data mimics the way information is processed in the human brain. Laws of physics are also added to the code.
"Knowing what comes out of the jet is very important. Knowing what comes out accurately is very difficult," said Sophia Gershman, a lead PPPL research engineer from the PCRF who worked on this collaborative project. The process would require several different devices to collect different kinds of information about the jet.
"In practical studies, it is difficult to go and utilize all of the various technologically advanced diagnostics all at once for each device and for various types of surfaces that we treat," Gershman explained.
Calculating the chemical composition one nanosecond at a time
Li Lin, a research scientist from GWU and the paper's primary author, said it's also difficult to calculate the chemicals in a CAP jet because the interactions need to be considered a nanosecond at a time.
"When you consider that the device is in operation for several minutes, the number of calculations makes the problem more than simply computationally intensive. It's practically impossible," Lin said. "Machine learning allows you to bypass the complicated part."
The project began with a small set of real-world data that was gathered using a technique known as Fourier-transform infrared absorption spectroscopy. The researchers used that small dataset to create a broader set of data. That data was then used to train the neural network using an evolutionary algorithm, which is a type of computer code inspired by nature that searches for the best answers using a survival-of-the-fittest approach.
Several successive batches of data are generated using slightly different approaches, and only the best datasets from each round are carried through to the next round of training until the desired results are achieved.
Ultimately, the team was able to accurately calculate the chemical concentrations, gas temperature, electron temperature and electron concentration of the cold atmospheric plasma jet based on data gathered during real-world experiments.
In a cold atmospheric plasma, the electrons—small, negatively charged particles—can be very hot, though the other particles are close to room temperature. The electrons can be at a low enough concentration that the plasma doesn't feel hot or burn the skin while still being able to have a significant effect on the targeted cells.
On the path to personalized plasma treatment
Michael Keidar, the A. James Clark Professor of Engineering at GWU and a frequent collaborator with PPPL who also worked on this project, said the long-term goal is to be able to perform these calculations fast enough that the software can automatically adjust the plasma during a procedure to optimize treatment. Keidar is currently working on a prototype of such a "plasma adaptive" device in his lab.
"Ideally, it can be personalized. The way we envision it, you treat the patient, and the response of every patient will be different," Keidar explained. "So, you can measure the response in real-time and then try to inform, using feedback and machine learning, the right settings in the plasma-producing device."
More research needs to be done to perfect such a device. For example, this study looked at the CAP jet over time but at only one point in space. Further research would need to broaden the work so it considers multiple points along the jet's output stream.
The study also looked at the plasma plume in isolation. Future experiments would need to integrate the surfaces treated by the plasma to see how that impacts the chemical composition at the treatment site.
More information: Li Lin et al, Data-driven prediction of the output composition of an atmospheric pressure plasma jet, Journal of Physics D: Applied Physics (2023). DOI: 10.1088/1361-6463/acfcc7

News
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]
The world’s first AI Hospital, developed in China is transforming healthcare
Artificial Intelligence and its developments have had a revolutionary impact on society, and healthcare is not an exception. China has made massive strides in AI integrated healthcare, and continues to do so as AI [...]
Scientists Rewire Immune Cells To Supercharge Cancer-Fighting Power
Blocking a single protein boosts T cell metabolism and tumor-fighting strength. The discovery could lead to next-generation cancer immunotherapies. Scientists have identified a strategy to greatly enhance the cancer-fighting abilities of the immune system’s [...]
Scientists Discover 20 Percent of Human DNA Comes from a Mysterious Ancestor
Humans carry a complex genetic history that continues to reveal surprises. Scientists have found that 20% of our DNA may come from a mysterious ancestor, according to WP Tech. This discovery changes how we understand [...]
AI detects early prostate cancer missed by pathologists
Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to find subtle tissue changes [...]
The Rare Mutation That Makes People Immune to Viruses
Some people carry a rare mutation that makes them resistant to viruses. Now scientists have copied that effect with an experimental mRNA therapy that stopped both flu and COVID in animal trials — raising [...]
Nanopore technique for measuring DNA damage could improve cancer therapy and radiological emergency response
Scientists at the National Institute of Standards and Technology (NIST) have developed a new technology for measuring how radiation damages DNA molecules. This novel technique, which passes DNA through tiny openings called nanopores, detects [...]
AI Tool Shows Exactly When Genes Turn On and Off
Summary: Researchers have developed an AI-powered tool called chronODE that models how genes turn on and off during brain development. By combining mathematics, machine learning, and genomic data, the method identifies exact “switching points” that [...]
Your brain could get bigger – not smaller – as you age
recently asked myself if I’ll still have a healthy brain as I get older. I hold a professorship at a neurology department. Nevertheless, it is difficult for me to judge if a particular brain, [...]
Hidden Cost of Smart AI: 50× More CO₂ for a Single Question
Every time we ask an AI a question, it doesn’t just return an answer—it also burns energy and emits carbon dioxide. German researchers found that some “thinking” AI models, which generate long, step-by-step reasoning [...]
Genetically-engineered immune cells show promise for preventing organ rejection
A Medical University of South Carolina team reports in Frontiers in Immunology that it has engineered a new type of genetically modified immune cell that can precisely target and neutralize antibody-producing cells complicit in organ rejection. [...]
Building and breaking plastics with light: Chemists rethink plastic recycling
What if recycling plastics were as simple as flicking a switch? At TU/e, Assistant Professor Fabian Eisenreich is making that vision a reality by using LED light to both create and break down a [...]
Generative AI Designs Novel Antibiotics That Defeat Defiant Drug-Resistant Superbugs
Harnessing generative AI, MIT scientists have created groundbreaking antibiotics with unique membrane-targeting mechanisms, offering fresh hope against two of the world’s most formidable drug-resistant pathogens. With the help of artificial intelligence, MIT researchers have [...]
AI finds more breast tumors earlier than traditional double radiologist review
AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by researchers led by Radboud [...]