Omicron relatives called BA.4 and BA.5 are behind a fresh wave of COVID-19 in South Africa, and could be signs of a more predictable future for SARS-CoV-2.
Here we go again. Nearly six months after researchers in South Africa identified the Omicron coronavirus variant, two offshoots of the game-changing lineage are once again driving a surge in COVID-19 cases there.
Several studies released in the past week show that the variants — known as BA.4 and BA.5 — are slightly more transmissible than earlier forms of Omicron and can dodge some of the immune protection conferred by previous infection and vaccination.
“We’re definitely entering a resurgence in South Africa, and it seems to be driven entirely by BA.4 and BA.5,” says Penny Moore, a virologist at the University of the Witwatersrand in Johannesburg, South Africa, whose team is studying the variants. “We’re seeing crazy numbers of infections. Just within my lab, I have six people off sick.”
However, scientists say it is not yet clear whether BA.4 and BA.5 will cause much of a spike in hospitalizations in South Africa or elsewhere. High levels of population immunity — provided by previous waves of Omicron infection and by vaccination — might blunt much of the damage previously associated with new SARS-CoV-2 variants.
Moreover, the rise of BA.4 and BA.5 — as well as that of another Omicron offshoot in North America — could mean that SARS-CoV-2 waves are beginning to settle into predictable patterns, with new waves periodically emerging from circulating strains (see ‘Omicron’s new identities’). “These are the first signs that the virus is evolving differently” compared with the first two years of the pandemic, when variants seemed to appear out of nowhere, says Tulio de Oliveira, a bioinformatician at Stellenbosch University in South Africa, who led one of the studies.
Source: Top, Our World in Data; Bottom, outbreak.info
Transmission advantage
By analysing viral genomes from clinical samples, de Oliveira and his colleagues found1 that BA.4 and BA.5 emerged in mid-December 2021 and early January 2022, respectively. The lineages have been rising in prevalence since then, and currently account for 60–75% of COVID-19 cases in South Africa. Researchers have also identified the variants in more than a dozen other countries, mostly in Europe.
On the basis of the growth in BA.4 and BA.5 case numbers in South Africa — which now average nearly 5,000 per day, from a low of around 1,200 in March — de Oliveira’s team estimates that the variants are spreading slightly faster than the BA.2 sub-lineage of Omicron (which itself was a bit more transmissible than the first Omicron variant, BA.1). The study was posted on the medRxiv preprint server and has not yet been peer reviewed.
The boost in transmissibility is “quite an advantage”, and similar in magnitude to the advantages that some other fast-spreading SARS-CoV-2 variants had over their predecessors, says Tom Wenseleers, an evolutionary biologist at the Catholic University of Leuven in Belgium. “Taking everything together and looking at all the data, it seems a sizeable new infection wave is certain to come.”
Jesse Bloom, a viral evolutionary biologist at Fred Hutch, a research centre in Seattle, Washington, agrees that BA.4 and BA.5 are spreading faster than other Omicron lineages. “What is still unclear is why they are more transmissible,” he says. “One possibility is that they are just inherently better at transmitting.” The other is that the variants are better at eluding immune responses such as antibodies, allowing them to infect people with prior immunity.
Both are closely related to BA.2 — although exactly how is not clear, Bloom adds (see ‘Pathogen progression’). BA.4 and BA.5 both carry a key mutation called F486V in their spike proteins — the viral protein responsible for infection and the prime target of immune responses. Bloom’s team has previously found that this mutation could help variants to dodge virus-blocking antibodies.
Source: covariants.org
Further studies suggest that BA.4 and BA.5 are growing, at least in part, because of their ability to evade immune responses. A team led by virologist Alex Sigal at the Africa Health Research Institute in Durban, South Africa, analysed blood samples from 39 people who had been infected during the first Omicron wave, 15 of whom had been vaccinated2.
In lab experiments, antibodies in these samples were several times less effective at preventing cells from being infected by BA.4 or BA.5 than they were at keeping out the original Omicron strain. However, antibodies produced by people who had been vaccinated were more potent against the new variants than were those from people whose immunity stemmed solely from BA.1 infection. The study was posted on medRxiv.
Another study3, posted on the ResearchSquare preprint server and led by virologist Xiaoliang Xie at Peking University in Beijing, also found that antibodies triggered by BA.1 infection were less potent against BA.4 and BA.5. Moore says the results chime with her unpublished experiments, too.
BA.4 and BA.5’s capacity to escape immunity, although not dramatic, “is enough to cause trouble and lead to an infection wave” — but the variants are not likely to cause disease much more severe than was seen during the previous wave, especially in vaccinated people, Sigal said in a Twitter post. “They clearly have an advantage in antibody escape, which is one contributing factor in why they are spreading,” says Bloom.
Hospitalizations are slowly ticking up in South Africa — from a low of just under 2,000 people in hospital with COVID-19 in early April — but researchers say it’s too soon to tell whether BA.4 and BA.5 will put much pressure on health-care systems. “The hospitals are empty in South Africa and we have high population immunity,” says de Oliveira.
The next wave
Although BA.4 and BA.5 have been detected in several European countries and in North America, the variants might not set off a fresh COVID-19 wave in these places — at least right away. The closely related BA.2 variant has just swept through Europe, so the population’s immunity could still be high, says Wenseleers. “It gives hope that maybe in Europe it will have a smaller advantage and will cause a smaller wave.”
Some parts of North America are also seeing the rise of other Omicron sub-lineages that have spike-protein mutations in some of the same places as in BA.4 and BA.5. One such variant — called BA.2.12.1 — also has the capacity to evade antibodies triggered by a previous Omicron infection and vaccination, according to the study3 led by Xie, and separate work by virologist David Ho at Columbia University in New York City. (Ho hasn’t yet reported his team’s data in a preprint, but has shared them with US government officials.)
The emergence of these strains suggests that the Omicron lineage is continuing to make gains by eroding immunity, says Ho. “It’s pretty clear that there are a few holes in Omicron that are gradually being filled up by these new sub-variants.”
If SARS-CoV-2 continues along this path, its evolution could come to resemble that of other respiratory infections, such as influenza. In this scenario, immune-evading mutations in circulating variants, such as Omicron, could combine with dips in population-wide immunity to become the key drivers of periodic waves of infection. “It is probably what we should expect to see more and more of in the future,” says Moore.
Previous variants, including Alpha, Delta and Omicron, differed substantially from their immediate predecessors, and all emerged, instead, from distant branches on the SARS-CoV-2 family tree.
Wenseleers and other scientists say we shouldn’t rule out more such surprises from SARS-CoV-2. For instance, Delta hasn’t completely vanished and, as global immunity to Omicron and its expanding family increases, a Delta descendant could mount a comeback. Whatever their source, new variants seem to emerge roughly every six months, notes Wenseleers, and he wonders whether this is the structure that COVID-19 epidemics will settle into.
“That is one way to read the patterns that have been observed so far,” says Bloom. “But I think we should be cautious in extrapolating general rules from a fairly short observation time frame.”

News
Nanoparticle-Based Combination Therapy for Resistant Melanoma
A recent study published in Small addresses the persistent difficulty of treating refractory melanoma, an aggressive form of skin cancer that often does not respond to existing therapies. Although diagnostic tools and immunotherapies have improved in [...]
Our DNA May Evolve Much Faster Than Previously Thought
Rapidly mutating DNA regions were mapped using a multi-generational family and advanced sequencing tools. Understanding how human DNA changes over generations is crucial for estimating genetic disease risks and tracing our evolutionary history. However, some of [...]
AI therapy may help with mental health, but innovation should never outpace ethics
Mental health services around the world are stretched thinner than ever. Long wait times, barriers to accessing care and rising rates of depression and anxiety have made it harder for people to get timely help. As a result, governments and health care providers are [...]
Global life expectancy plunges as WHO warns of deepening health crisis Post-COVID
The World Health Organization (WHO) has sounded the alarm on the long-term health repercussions of the COVID-19 pandemic in its newly released World Health Statistics Report 2025. The report reveals a staggering decline in global [...]
Researchers map brain networks involved in word retrieval
How are we able to recall a word we want to say? This basic ability, called word retrieval, is often compromised in patients with brain damage. Interestingly, many patients who can name words they [...]
Melting Ice Is Changing the Color of the Ocean – Scientists Are Alarmed
Melting sea ice changes not only how much light enters the ocean, but also its color, disrupting marine photosynthesis and altering Arctic ecosystems in subtle but profound ways. As global warming causes sea ice in the [...]
Your Washing Machine Might Be Helping Antibiotic-Resistant Bacteria Spread
A new study reveals that biofilms in washing machines may contain potential pathogens and antibiotic resistance genes, posing possible risks for laundering healthcare workers’ uniforms at home. Washing healthcare uniforms at home could be [...]
Scientists Discover Hidden Cause of Alzheimer’s Hiding in Plain Sight
Researchers found the PHGDH gene directly causes Alzheimer’s and discovered a drug-like molecule, NCT-503, that may help treat the disease early by targeting the gene’s hidden function. A recent study has revealed that a gene previously [...]
How Brain Cells Talk: Inside the Complex Language of the Human Mind
Introduction The human brain contains nearly 86 billion neurons, constantly exchanging messages like an immense social media network, but neurons do not work alone – glial cells, neurotransmitters, receptors, and other molecules form a vast [...]
Oxford study reveals how COVID-19 vaccines prevent severe illness
A landmark study by scientists at the University of Oxford, has unveiled crucial insights into the way that COVID-19 vaccines mitigate severe illness in those who have been vaccinated. Despite the global success of [...]
Annual blood test could detect cancer earlier and save lives
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]