Cancer biologists at EPFL, UNIGE, and the German Cancer Research Center (Heidelberg) have developed a novel immunotherapy that does not require knowledge of a tumor’s antigenic makeup. The new results may pave the way to first-in-kind clinical applications.
Unfortunately, tumors often erect barriers against the body’s immune system, allowing them to grow uncontrolled. This setback, called immunosuppression, may involve the inhibition of DCs and their ability to present tumor antigens to CD8+ T cells.
Addressing the limitations of traditional vaccines
Over the last few decades, researchers have worked to overcome tumor-induced immunosuppression by various strategies, collectively called immunotherapies, some of which are approved treatments effective in patients with certain cancers.
One approach is to generate DCs from the blood monocytes (a type of immune white blood cells) of a patient with cancer, expose them in the laboratory to defined tumor-derived material from a tumor biopsy (antigen loading step), and then reintroduce them into the patient’s body. This procedure, often referred to as a DC vaccine, is expected to significantly enhance the presentation of tumor antigens to CD8+ T cells.
However, DC vaccines have produced mixed results in clinical trials. One potential limitation is the use of monocyte-derived DCs. These cells lack certain essential properties of naturally occurring DCs, such as type I DCs (cDC1), which play a crucial role in activating CD8+ T cells.
Another potential shortcoming is its dependence on the antigen loading step, which uses predefined antigens that may not represent the full spectrum of relevant antigens present in cancer cells. Addressing the limitations of traditional DC vaccines could enhance their therapeutic efficacy.
A team of scientists led by Michele De Palma, associate professor in the School of Life Sciences and director of the Agora Cancer Research Center, has now developed engineered DCs with the capacity to differentiate into cDC1 and to stimulate anti-tumor immunity when transferred to mice with tumors, without the need for antigen loading step. The study is published in Nature Cancer.
“Our strategy does not use the monocyte-derived DCs employed in previous studies, but relies on a population of DC progenitors, called DCPs, which we can produce in vitro in the laboratory from readily available sources, such as blood and bone marrow,” De Palma explains.
Surpassing the outcomes
When engineered to express two immune-stimulatory molecules (IL-12 and FLT3L), the DCP could initiate effective anti-tumor immune responses in various cancer models, surpassing the outcomes achieved with other traditional DC formulations. “Remarkably, the engineered DCPs worked in the absence of antigen loading, which implies that they could be potentially effective against a broad range of human cancers, so irrespective of the antigens that they express.”
The ability of engineered DCPs to broadly engage multiple components of the immune system, not limited to CD8+ T cells, may explain their effectiveness. “A very promising result was the ability of the DCPs to unlock the efficacy of CAR-T cells in eradicating brain tumors in mice,” says Professor Denis Migliorini, head of neuro-oncology at UNIGE and one of the study’s authors.
CAR-T cells are another class of engineered immune cells already approved for the treatment of certain tumors, but their efficacy in brain cancer has so far been limited. “We are committed to combining DCPs with CAR-T cells in patients with incurable brain cancer,” adds Migliorini.
“Our preclinical results require further development and testing before moving to clinical application,” cautions De Palma. DCPs can be readily obtained from human blood, which should facilitate the translation of preclinical results into a potentially transformative cancer immunotherapy.
More information: Ali Ghasemi et al, Cytokine-armed dendritic cell progenitors for antigen-agnostic cancer immunotherapy, Nature Cancer (2023). DOI: 10.1038/s43018-023-00668-y

News
AI therapy may help with mental health, but innovation should never outpace ethics
Mental health services around the world are stretched thinner than ever. Long wait times, barriers to accessing care and rising rates of depression and anxiety have made it harder for people to get timely help. As a result, governments and health care providers are [...]
Global life expectancy plunges as WHO warns of deepening health crisis Post-COVID
The World Health Organization (WHO) has sounded the alarm on the long-term health repercussions of the COVID-19 pandemic in its newly released World Health Statistics Report 2025. The report reveals a staggering decline in global [...]
Researchers map brain networks involved in word retrieval
How are we able to recall a word we want to say? This basic ability, called word retrieval, is often compromised in patients with brain damage. Interestingly, many patients who can name words they [...]
Melting Ice Is Changing the Color of the Ocean – Scientists Are Alarmed
Melting sea ice changes not only how much light enters the ocean, but also its color, disrupting marine photosynthesis and altering Arctic ecosystems in subtle but profound ways. As global warming causes sea ice in the [...]
Your Washing Machine Might Be Helping Antibiotic-Resistant Bacteria Spread
A new study reveals that biofilms in washing machines may contain potential pathogens and antibiotic resistance genes, posing possible risks for laundering healthcare workers’ uniforms at home. Washing healthcare uniforms at home could be [...]
Scientists Discover Hidden Cause of Alzheimer’s Hiding in Plain Sight
Researchers found the PHGDH gene directly causes Alzheimer’s and discovered a drug-like molecule, NCT-503, that may help treat the disease early by targeting the gene’s hidden function. A recent study has revealed that a gene previously [...]
How Brain Cells Talk: Inside the Complex Language of the Human Mind
Introduction The human brain contains nearly 86 billion neurons, constantly exchanging messages like an immense social media network, but neurons do not work alone – glial cells, neurotransmitters, receptors, and other molecules form a vast [...]
Oxford study reveals how COVID-19 vaccines prevent severe illness
A landmark study by scientists at the University of Oxford, has unveiled crucial insights into the way that COVID-19 vaccines mitigate severe illness in those who have been vaccinated. Despite the global success of [...]
Annual blood test could detect cancer earlier and save lives
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]