In a recent study published in the journal Science Advances, researchers leveraged crucial aspects of feline eyes, particularly their tapetum lucidum and vertically elongated pupils (VP), to develop a monocular artificial vision system capable of hardware-level object detection, recognition, and camouflage-breaking. While software-aided implementations of object recognition and tracking have been attempted, they require substantial energy and computation requirements, necessitating hardware-level innovations.
The present vision system uses a custom slit-like elliptical aperture (inspired by the asymmetric depth of field of cats’ VPs) to augment object focus and allow for an asymmetric depth of field, improving contrast between the target object and its background. An additional tapetum lucidum-inspired silicon photodiode array with patterned metal reflectors enhances low-light vision. Together, these advancements open the doors to a new generation of mobile robots that can detect, recognize, and track targets with significantly improved accuracy, even in dynamically changing environments with variable lighting conditions.
Background
The 21st century has witnessed unprecedented advancements in robotics and automation, resulting in the gradual influx of robotics across scientific, medical, industrial, and military applications. While software-based machine learning (ML) and artificial intelligence (AI) deployments have revolutionized robotic automation, hardware-level progress remains shackled by the limitations of conventional design and fabrication decisions.
An ideal example of the above is vision-based operation strategies. Conventional image-capturing devices (e.g., cameras) were optimized to record image data (e.g., light intensity, color, and object shape) but required user input to adjust aperture size and exposure duration to target objects focused under dynamically changing lighting. Modern robotics applications, particularly those used for surveillance, cannot be content with passive image data acquisition. Instead, they need to extract and analyze real-time image data and use this information to guide their subsequent motion.
“However, these tasks become substantially difficult under diverse environments and illumination conditions (e.g., indoor and outdoor and daytime and nighttime). This variability can severely affect the contrast between target objects and their backgrounds, mainly due to pixel saturation under bright conditions and low photocurrent in dark conditions. Objects often create indistinct boundaries with their backgrounds, posing detection and differentiation challenges.”
Software-based computer vision technologies, including high dynamic range (HDR), binocular vision-based camouflage-breaking, and AI-assisted post-processing, have partially addressed the hardware limitations of today’s robotics implementations. Unfortunately, these technologies require substantial computational and energetic (power/electricity) investment, increasing the size and running costs of resulting robotic systems. It is thus imperative for the future of robot automation that hardware capable of unassisted object identification, camouflage-breaking, and optimized performance under a wide range of lighting conditions is developed.
“…animals have adapted themselves to ecologically complex environments for their survival. As a result, distinctive vision systems optimized for their habitats have been developed through long-term evolution. These natural vision systems could offer potential solutions to tackle limitations of conventional artificial vision systems, in terms of depth of field (DoF), field of view (FoV), and optical aberrations.”
About the study
In the present study, researchers developed and tested an artificial vision system that mimics the feline eye. The system comprises two main components: a custom-made optical lens capable of varying apertures between elliptical, small shape, and full-opening circular and a novel hemispherical silicon photodiode array with patterned metal (silver) reflectors (HPA-AgR).
The photodiode array was fabricated by spin coating a silicon dioxide (SiO₂) wafer with a polyamic acid solution containing an ultrathin polyimide (PI) layer upon which a patterned reflector was superimposed using the wet-etching technique (100 nm Ag). The structured reflectors were designed to simulate the light-reflecting properties of the tapetum lucidum, enhancing light absorption under dim lighting conditions. The performance of the resulting photodiode was measured using a wide temperature (3100 K) halogen lamp, a probe station (image sensor array + semiconductor device analyzer), and a data acquisition (DAQ) board.
Monte Carlo-based ray tracing was used to evaluate the camouflage-breaking performance of the feline-inspired vision system versus conventional optical systems (circular pupil [CP]) against a variable lighting of 0-500 lumens.
Study findings
While monocular CP systems (including human eyes) struggle to differentiate between the target object and its background (pixel saturation) in extremely bright scenarios, the asymmetrical aperture design of feline eyes (feline VP) and, by extension, the current vision system can adjust focus between different (tangential and sagittal) planes thereby substantially offsetting light intensity and enabling camouflage breaking.
The design also allows for improved focus on objects at different distances, further reducing optical noise from background elements. Comparisons between the current VP-inspired and conventional CP-like systems highlight the latter’s lack of camouflage-breaking, especially in bright-light conditions. This is predominantly due to observed astigmatism between tangential and sagittal planes, which blurs the target and its background. In contrast, the VP system could easily distinguish between the target and the object irrespective of ambient light intensity. Furthermore, while ‘locked on’ a target, the vision system’s design blurs out the target’s background, reducing the amount of uninformative noise and thereby lowering the computational burden required for real-time analysis.
“Although computer vision and deep learning algorithms have substantially improved handling of noisy targets, the feline eye–inspired vision system provides intrinsic advantages originated from hardware. The feline eye–inspired artificial vision inherently induces background blurring and camouflage breaking, which can markedly reduce the computational burden.”
Similarly, while monocular CP systems achieve high camouflage-breaking performance in low-light conditions (wide-open pupils), they often suffer from low photocurrent in dark scenarios. Feline (and the current artificial) optics circumvent this limitation by not only fully dilating their VPs but also using their tapetum lucidum (or, in the artificial case, their metal reflectors) to reflect ambient light onto the pupil, further enhancing low-light target acquisition. Notably, comparisons between conventional CP optics and the current VP-inspired ones revealed that the novel system is 52-58% more efficient at photoabsorption than traditional technologies.
Despite these advances, the researchers noted one primary limitation of their system: its narrow field of view (FoV). Innovations in optic system movement (possibly inspired by the movements of cat heads) will be needed before these systems can be integrated into autonomous robotics.
Conclusions
The present study reports the development and validation of a novel, feline eye-inspired vision system. The system consists of a variable aperture lens and a metallic silicon photodiode array to achieve unprecedented, hardware-level object tracking and camouflage-breaking irrespective of the intensity of ambient light. While this vision system suffers from a low FoV, advancements in robotic movement may allow for its integration into autonomous robotics, allowing for a new generation of unmanned surveillance and tracking systems.
- Min Su Kim et al. Feline eye–inspired artificial vision for enhanced camouflage breaking under diverse light conditions. Sci. Adv.10, eadp2809 (2024), DOI – 10.1126/sciadv.adp2809, https://www.science.org/doi/10.1126/sciadv.adp2809

News
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]
Instant coffee may damage your eyes, genetic study finds
A new genetic study shows that just one extra cup of instant coffee a day could significantly increase your risk of developing dry AMD, shedding fresh light on how our daily beverage choices may [...]
Nanoneedle patch offers painless alternative to traditional cancer biopsies
A patch containing tens of millions of microscopic nanoneedles could soon replace traditional biopsies, scientists have found. The patch offers a painless and less invasive alternative for millions of patients worldwide who undergo biopsies [...]
Small antibodies provide broad protection against SARS coronaviruses
Scientists have discovered a unique class of small antibodies that are strongly protective against a wide range of SARS coronaviruses, including SARS-CoV-1 and numerous early and recent SARS-CoV-2 variants. The unique antibodies target an [...]
Controlling This One Molecule Could Halt Alzheimer’s in Its Tracks
New research identifies the immune molecule STING as a driver of brain damage in Alzheimer’s. A new approach to Alzheimer’s disease has led to an exciting discovery that could help stop the devastating cognitive decline [...]