A groundbreaking study evaluates the feasibility, risks, and ethical considerations of creating mirror bacteria with reversed chirality, highlighting potential threats to health and ecosystems.
In a recent study published in Science, a team of researchers investigated and discussed the potential roadblocks to and risks of “mirror life,” where life forms are synthesized using biomolecules with reversed chirality compared to natural life.
The researchers assessed the feasibility, safety concerns, and governance strategies to address the unprecedented risks posed by these synthetic life forms.
Background
Natural life is characterized by specific molecular chirality, with ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and proteins being composed of specific enantiomers.
Advances in synthetic biology now allow for the synthesis of mirror-image biomolecules, which are resistant to degradation and hold promise for therapeutic applications.
Furthermore, the creation of mirror organisms, such as mirror bacteria, represents a significant advancement in biological engineering that can combine these mirror-image biomolecules into viable life forms.
However, while synthetic mirror molecules offer some benefits, the construction of mirror organisms also raises significant concerns. Such entities could evade immune responses, resist natural predators, and potentially proliferate uncontrollably, presenting risks to health and ecosystems.
Although existing studies have explored the functionality of these mirror biomolecules, a comprehensive risk assessment for mirror organisms is lacking.
The growing technical feasibility of creating mirror life highlights the need for deeper understanding, ethical considerations, and regulatory measures to address potential dangers and to balance scientific progress with public safety.
About the study
The present study analyzed the feasibility and risks associated with creating mirror bacteria using mirror-image biomolecules. The team, consisting of experts in synthetic biology, immunology, ecology, and biosecurity, assessed the technical challenges and potential hazards of mirror life.
They focused on the likelihood of mirror bacteria surviving and spreading in natural and host environments, with specific attention to their interactions with immune systems and ecosystems.
The analysis highlighted key technical hurdles in constructing mirror bacteria, including synthesizing complex mirror molecules such as DNA, proteins, and ribosomes. Furthermore, the researchers identified and discussed the two potential methods for constructing mirror organisms.
The study also examined how mirror bacteria might evade immune defenses, given the importance of chirality to immune recognition. Additionally, the researchers emphasized the risk of ecological invasion and compared mirror bacteria to invasive species that thrive without natural predators.
Results
The study reported that mirror bacteria could evade immune responses and disrupt ecosystems, posing significant risks. These organisms were expected to resist common immune mechanisms, such as antigen presentation and antibody production, potentially allowing unchecked growth.
Mirror bacteria were also predicted to survive environmental challenges, avoiding predation and natural microbial competition due to their reversed chirality.
The researchers determined that reversed chirality makes mirror biomolecules resistant to immune recognition and predation, enabling their survival and proliferation in natural environments. Such bacteria could potentially cause severe infections in humans, animals, and plants due to impaired immune defenses.
Furthermore, the findings indicated that mirror bacteria could potentially also resist degradation from immune processes, such as antigen presentation and antibody generation.
Vertebrate immune systems, which rely on these mechanisms, would likely be ineffective against mirror pathogens. Invertebrates and plants may also experience compromised immune responses.
The experimental data indicated that mirror proteins could also be resistant to cleavage and may not effectively trigger adaptive immune mechanisms, supporting the predictions about the severe pathogenic potential of these organisms.
Beyond health risks, the authors predicted that mirror bacteria could also evade natural microbial competitors and predators, including bacteriophages and antibiotics, due to their unique chirality.
This could allow them to colonize various environments, much like invasive species with limited natural controls.
Even with proposed biocontainment measures, such as engineered dependencies on synthetic nutrients, the potential for escape and misuse remains significant. The researchers stated that physical containment measures, while helpful, are vulnerable to accidents and failures.
The capacity of the mirror bacteria to exploit achiral nutrients and engineered pathways for consuming common nutrients further increases their potential to thrive outside laboratory settings.
The analysis also highlighted the potential for ecological imbalance. The persistent presence of mirror bacteria in ecosystems could lead to global dissemination, evolution, and harm to biodiversity. Even stringent biocontainment measures might fail to prevent accidental or even deliberate release.
Conclusions
In summary, the study stated that while mirror biomolecules offer valuable scientific applications, the risks of creating mirror bacteria far outweigh the potential benefits.
The study stated that creating mirror bacteria poses extraordinary risks to health and ecosystems due to immune evasion and ecological disruption, and the findings called for stringent policies to prevent the development of mirror organisms.
Preventing the development of mirror organisms ensures public safety while allowing progress in beneficial areas of synthetic biology. Furthermore, the team emphasized that collaboration among scientists, policymakers, and stakeholders is essential to mitigate these risks responsibly.
- Adamala, Katarzyna P, Agashe, D., Belkaid, Y., Matias, D., Cai, Y., Chang, M. W., Chen, I. A., Church, G. M., Cooper, V. S., Davis, M. M., Devaraj, N. K., Endy, D., Esvelt, K. M., Glass, J. I., Hand, T. W., Inglesby, T. V., Isaacs, F. J., James, W. G., Jonathan, & Kay, M. S. (2024). Confronting risks of mirror life. Science, 0(0), eads9158. doi:10.1126/science.ads9158. https://www.science.org/doi/10.1126/science.ads9158
News
A Virus Designed in the Lab Could Help Defeat Antibiotic Resistance
Scientists can now design bacteria-killing viruses from DNA, opening a faster path to fighting superbugs. Bacteriophages have been used as treatments for bacterial infections for more than a century. Interest in these viruses is rising [...]
Sleep Deprivation Triggers a Strange Brain Cleanup
When you don’t sleep enough, your brain may clean itself at the exact moment you need it to think. Most people recognize the sensation. After a night of inadequate sleep, staying focused becomes harder [...]
Lab-grown corticospinal neurons offer new models for ALS and spinal injuries
Researchers have developed a way to grow a highly specialized subset of brain nerve cells that are involved in motor neuron disease and damaged in spinal injuries. Their study, published today in eLife as the final [...]
Urgent warning over deadly ‘brain swelling’ virus amid fears it could spread globally
Airports across Asia have been put on high alert after India confirmed two cases of the deadly Nipah virus in the state of West Bengal over the past month. Thailand, Nepal and Vietnam are among the [...]
This Vaccine Stops Bird Flu Before It Reaches the Lungs
A new nasal spray vaccine could stop bird flu at the door — blocking infection, reducing spread, and helping head off the next pandemic. Since first appearing in the United States in 2014, H5N1 [...]
These two viruses may become the next public health threats, scientists say
Two emerging pathogens with animal origins—influenza D virus and canine coronavirus—have so far been quietly flying under the radar, but researchers warn conditions are ripe for the viruses to spread more widely among humans. [...]
COVID-19 viral fragments shown to target and kill specific immune cells
COVID-19 viral fragments shown to target and kill specific immune cells in UCLA-led study Clues about extreme cases and omicron’s effects come from a cross-disciplinary international research team New research shows that after the [...]
Smaller Than a Grain of Salt: Engineers Create the World’s Tiniest Wireless Brain Implant
A salt-grain-sized neural implant can record and transmit brain activity wirelessly for extended periods. Researchers at Cornell University, working with collaborators, have created an extremely small neural implant that can sit on a grain of [...]
Scientists Develop a New Way To See Inside the Human Body Using 3D Color Imaging
A newly developed imaging method blends ultrasound and photoacoustics to capture both tissue structure and blood-vessel function in 3D. By blending two powerful imaging methods, researchers from Caltech and USC have developed a new way to [...]
Brain waves could help paralyzed patients move again
People with spinal cord injuries often lose the ability to move their arms or legs. In many cases, the nerves in the limbs remain healthy, and the brain continues to function normally. The loss of [...]
Scientists Discover a New “Cleanup Hub” Inside the Human Brain
A newly identified lymphatic drainage pathway along the middle meningeal artery reveals how the human brain clears waste. How does the brain clear away waste? This task is handled by the brain’s lymphatic drainage [...]
New Drug Slashes Dangerous Blood Fats by Nearly 40% in First Human Trial
Scientists have found a way to fine-tune a central fat-control pathway in the liver, reducing harmful blood triglycerides while preserving beneficial cholesterol functions. When we eat, the body turns surplus calories into molecules called [...]
A Simple Brain Scan May Help Restore Movement After Paralysis
A brain cap and smart algorithms may one day help paralyzed patients turn thought into movement—no surgery required. People with spinal cord injuries often experience partial or complete loss of movement in their arms [...]
Plant Discovery Could Transform How Medicines Are Made
Scientists have uncovered an unexpected way plants make powerful chemicals, revealing hidden biological connections that could transform how medicines are discovered and produced. Plants produce protective chemicals called alkaloids as part of their natural [...]
Scientists Develop IV Therapy That Repairs the Brain After Stroke
New nanomaterial passes the blood-brain barrier to reduce damaging inflammation after the most common form of stroke. When someone experiences a stroke, doctors must quickly restore blood flow to the brain to prevent death. [...]
Analyzing Darwin’s specimens without opening 200-year-old jars
Scientists have successfully analyzed Charles Darwin's original specimens from his HMS Beagle voyage (1831 to 1836) to the Galapagos Islands. Remarkably, the specimens have been analyzed without opening their 200-year-old preservation jars. Examining 46 [...]















