Nanotechnology is expanding the ease of medical equipment access, information, and theranostics. Nanomedicine is the use of nanotechnology in medicine to provide efficient solutions for disease diagnosis, therapy, and prevention. In this article, AZoNano focuses on how nanomedicine is impacting society.
Nanotechnology in Society
Societies worldwide that lack access to fundamental services like clean water, healthcare, and stable energy benefit from novel solutions offered by nanotechnology. Nanoscience helps to address the urgent need for accessibility to essential services by creating products such as enhanced water purification and filtration systems.
Water filters as small as 15-20 nanometers in width may eliminate nano-sized particles such as viruses and bacteria. The cost-effectiveness and portability of these water treatment devices makes them suitable for boosting the quality of drinkable water in developing nations.
For instance, nano-filters made of graphene can be delivered to remote locations at which only contaminated water is obtainable and filtration is most needed.
Nanomedicine, including tools and equipment for medical diagnosis and treatment, food production, and information technologies, are a few other applications where nanotechnology is used to improve the standard of living offered to society’s citizens.
What Are the Benefits and Barriers of Nanomedicine?
The societal impact of nanomedicine refers to both the benefits and barriers (issues) that introducing revolutionary nano-based products including medical sensors, drug delivery systems, and nanomaterials might pose to humanity and society.
Nanomedicine can increase the effectiveness (bioavailability) and safety of traditional therapeutics. It is extremely beneficial as a non-invasive instrument for diagnostic imaging, tumor identification, and drug delivery due to the distinct magnetic, optical, and structural features of nanomaterials that other instruments lack.
Nanovaccines are nanorods or nanoparticles distributed in a fluid with antigens for a specific illness. Antigens cause an immunological reaction when a nanovaccine is administered to the body, which can strengthen immunity. They have the potential to become a crucial method for distributing vaccinations to remote areas since nanomedicine can be utilized as a preventive measure for several diseases.
Still, significant benefits have their share of risks and barriers. The lack of batch-to-batch repeatability, long-term stability of inventions, the complexity of the production procedures, long-term toxicity assessments, societal acceptance, and maintaining sterile settings are among the barriers associated with the translation of nanomedicines.
The legislative guidance needed for nanomedicine innovations to proceed with clinical trials lags behind the ongoing scientific developments in this respect.
The global translation of nanomedicine has also been hindered by the lack of proper controls, poorly defined key quality criteria, and therapeutically appropriate animal models that accurately represent human biological mechanisms.
Safety and environmental concerns, coupled with transitional consequences like the displacement of conventional businesses as nanotechnology-based products take hold and become the mainstream, are other barriers that privacy rights activists have found concerning. These could be particularly relevant if the potential nanotoxicity impacts of nanoparticles are disregarded.
The progressive adoption of uniformly standardized procedures might encourage improved and factual reporting of materials and processes and impact the paradigm for many already available nanomedicine products.
Boosting Trust in Nanomedicine
The inventive aspect of nanomedicine may captivate society’s interest; however, there are several concerns regarding the societal and environmental impacts of its progress. Studies have proven that using nanomedicine has many benefits but transforming society will depend on public perception.
Therefore, several organizations and social scientists in society recommend that public engagement should be included in the technical evaluation for the commercialization of nano-based products in addition to governance.
Scientists are working to address major medical issues like the COVID-19 pandemic, which demand rapid attention from the perspective of society to provide trustworthy nanomedicines for the public.
John Hopkins University researchers have created a sensor that can quickly and accurately identify COVID-19 and other viruses by employing large-area nanoimprint lithography, machine learning and surface-enhanced Raman spectroscopy (SERS).
Cytimmune, a biotechnology company, has developed Aurmine (CYT-6091), a new nanomedicine-based therapy for treating solid tumor malignancies. It is composed of gold nanoparticles, polyethylene glycol (PEG-THIOL) molecules, and tumor necrosis factor-alpha (TNF-α), a tumor-killing agent attached to it.
TNF molecules attach the gold nanoparticle to cancerous cells once it enters the vicinity of a cancer tumor. The therapeutic product is now being prepared for phase 2 clinical trials to be conducted at National Cancer Institute (NCI).
Organizations such as the Food and Drug Administration (FDA), the United States Environmental Protection Agency, and the Health & Consumer Protection Directorate of the European Commission have already begun addressing the potential negative impacts posed by nanoparticles to manage risks associated with nanomedicines. As a result, the public’s trust in nanomedicine advancements can be encouraged.
The National Nanotechnology Initiative is working to advance the commercialization of nanotechnology research and development, promote public awareness, and ensure the ethical advancement of nanomedicine for the benefit of society.
The National Institute for Occupational Safety and Health (NIOSH) has also conducted preliminary studies on how individuals may be exposed to nanoparticles during the fabrication or industrial usage of nanomaterials and how nanoparticles interact with the body’s internal systems.
NIOSH currently provides provisional guidelines for handling nanomaterials that are in accordance with the state of scientific understanding. Based on the information, various researchers, regulatory agencies, and healthcare organizations are uniting to boost the public’s trust in nanomedicine and have a beneficial social impact.
Image Credit: Unitone Vector/Shutterstock.com
Future Outlook: The Impact of Nanomedicine on Society
Numerous products and innovations in the field of nanomedicine are now on the market. However, others still need to overcome barriers, including technological constraints, cost-effectiveness issues, and possible hazards that might have an adverse impact on society.
To address these issues, proponents of nanomedicine can make significant contributions to studies targeted at creating effective belief systems and control frameworks that encourage ethical research practices and prevent misconduct.
Contributions may involve establishing what constitutes improper practices, assigning researchers, institutions, and funding organizations clearly defined responsibilities concerning the negative impacts of nanomedicines, and designing a fair, precise, knowledge-based system for sanctions and accusation investigations.
This would promote the development of effective policies for the impartial evaluation of innovations in nanomedicine both nationally and internationally and lead to an advanced societal future.
Continue reading: The Benefits of Nanomedicine
Image Credit: Envato Elements

News
Silver nanoparticles show promise in fighting antibiotic-resistant bacteria
In a new study, scientists with the University of Florida have found that a combination of silver nanoparticles and antibiotics is effective against antibiotic-resistant bacteria. The researchers hope to turn this discovery into viable [...]
Combating severe cancer with a new drug delivery system
Peritoneal cancer is difficult to treat and has a poor survival prognosis. But a new and effective nanomedicine delivery system is offering some hope. The company is called NaDeNo and is well underway with [...]
New Research Shows How Ketamine Acts As “Switch” in the Brain
According to a new study by researchers at Penn Medicine, ketamine, which is well-known as an anesthetic and is becoming increasingly popular as an antidepressant, dramatically reorganizes activity in the brain, almost as if [...]
Supercharged T Cells: A New Way To Kill Pancreatic Cancer With Minimal Side Effects
A new immunotherapy releases cancer-killing cytokines only within the tumor. Researchers at the University of California San Francisco (UCSF) have developed a new T cell-based immunotherapy that selectively targets cancer cells, producing a powerful anti-cancer cytokine [...]
AI has designed bacteria-killing proteins from scratch – and they work
An AI was tasked with creating proteins with anti-microbial properties. Researchers then created a subset of the proteins and found some did the job. An AI has designed anti-microbial proteins that were then tested [...]
Using nanoparticles, researchers can identify and deliver synergistic combinations of cancer drugs
Treating cancer with combinations of drugs can be more effective than using a single drug. However, figuring out the optimal combination of drugs, and making sure that all of the drugs reach the right [...]
Humanity May Reach Singularity Within Just 7 Years, Trend Shows
By one unique metric, we could approach technological singularity by the end of this decade, if not sooner. A translation company developed a metric, Time to Edit (TTE), to calculate the time it takes for professional [...]
HYPER (Highly Interactive Particle Relics) – A New Model for Dark Matter
Phase transition in early universe changes strength of interaction between dark and normal matter. Dark matter remains one of the greatest mysteries of modern physics. It is clear that it must exist, because without [...]
New Nanoparticles Deliver Therapy Brain-Wide and Edit Alzheimer’s Gene
Summary: Researchers have developed a new family of nano-scale capsules capable of carrying CRISPR gene editing tools to different organs of the body before harmlessly dissolving. The capsules were able to enter the brains of [...]
Cancer’s Secret Weapon? Enzyme That Protects Against Viruses May Fuel Tumor Evolution
An enzyme that defends human cells against viruses can help drive cancer evolution towards greater malignancy by causing myriad mutations in cancer cells, according to a study led by investigators at Weill Cornell Medicine. The [...]
Scientists Uncover Japanese Fruit Juice That May Help Prevent Lung Cancer
Using a mouse model, Japanese researchers unleash the likely mechanism of action of Actinidia arguta (sarunashi) juice on lung cancer development. Lung cancer is a leading cause of death in Japan and across the [...]
In-place manufacturing method improves gas sensor capabilities, production time
When used as wearable medical devices, stretchy, flexible gas sensors can identify health conditions or issues by detecting oxygen or carbon dioxide levels in the breath or sweat. They also are useful for monitoring [...]
In the core of the cell: New insights into the utilization of nanotechnology-based drugs
Novel drugs, such as vaccines against covid-19, among others, are based on drug transport using nanoparticles. Whether this drug transport is negatively influenced by an accumulation of blood proteins on the nanoparticle’s surface was [...]
The costly lesson from COVID: why elimination should be the default global strategy for future pandemics
Imagine it is 2030. Doctors in a regional hospital in country X note an expanding cluster of individuals with severe respiratory disease. Rapid whole-genome sequencing identifies the disease-causing agent as a novel coronavirus. Epidemiological [...]
How Artificial Intelligence Found the Words To Kill Cancer Cells
A predictive model has been developed that enables researchers to encode instructions for cells to execute. Scientists at the University of California, San Francisco (UCSF) and IBM Research have created a virtual library of thousands of “command sentences” [...]
Next-generation, light-activated nanotech for antibiotic-resistant superbugs
It's "lights out" for antibiotic-resistant superbugs as next-generation light-activated nanotech proves it can eradicate some of the most notorious and potentially deadly bacteria in the world. Developed by the University of South Australia and [...]