Some quantum computers and networks store their information in an electron’s spin, which can be up or down – like the zeros or ones in a conventional computer. They can also be a combination of both up and down. One way to manipulate the electron spins may be through using sound waves.
The first challenge in this study was to prime the spins so they were ready. Scientists built a system with curved electrodes to concentrate the sound waves.
This is like using a magnifying lens to focus a point of light. Unique x-ray microscopy instrumentation allowed researchers to directly watch atoms move in a quantum material as sound waves passed through them.
Researchers invented a unique way for different types of quantum technology to “talk” to each other using sound. For part of the work, they used the Center for Nanoscale Materials (CNM) and the Advanced Photon Source (APS), both DOE user facilities. The study provides a step towards bringing quantum technology closer to reality.
Communicating quantum information is a challenging task. It is difficult to move information stored in electron spin within a device. However, since different quantum systems represent quantum information in different ways, combining more than one type into a hybrid system could take advantage of the strengths of each one.
For instance, optical photons can send quantum states across long distances. An electron’s spin state can store information, which allows scientists to expand the binary information storage system used in traditional computing.

Image Credit:  Kevin Satzinger and Samuel Whiteley


News This Week

Walking with atoms

Ever since it was proposed that atoms are building blocks of the world, scientists have been trying to understand how and why they bond to each other. Be it a molecule (which is a [...]

Illuminating the world of nanoparticles

Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food [...]

Self-driving microrobots

Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms. If you could distribute autonomous microrobots within these materials, then you could [...]