In a new study, scientists with the University of Florida have found that a combination of silver nanoparticles and antibiotics is effective against antibiotic-resistant bacteria.
For centuries, silver has been known to have antimicrobial properties. However, silver nanoparticles—microscopic spheres of silver small enough to operate at the cellular level—represent a new frontier in using the precious metal to fight bacteria.
In this study, the research team tested whether commercially available silver nanoparticles boost the power of antibiotics and enable these drugs to counter the very bacteria that have evolved to withstand them.
“We found that the silver nanoparticles and a common class of broad-spectrum antibiotics called aminoglycosides work together synergistically,” said Daniel Czyż, senior author of the study and an assistant professor in the UF/IFAS department of microbiology and cell science.
“When combined with a small amount of silver nanoparticles, the amount of antibiotic needed to inhibit the bacteria decreased 22-fold, which tells us that the nanoparticles make the drug much more potent,” Czyż explained. “In addition, aminoglycosides can have negative side effects, so using silver nanoparticles could allow for a lower dose of antibiotic, reducing those side effects.”
The findings were both surprising and exciting, said Autumn Dove, first author of the study and a doctoral candidate studying microbiology and cell science in the UF/IFAS College of Agricultural and Life Sciences.
“When I first saw the result, my first thoughts were, ‘Wow, this works,'” said Dove.
Over the last several decades, overuse of antibiotics had led to the emergence of antibiotic-resistant bacteria and a decline in the effectiveness of traditional antibiotic drugs, the researchers said. The study’s findings indicate that silver nanoparticles have the potential to renew the effectiveness of some of these drugs.
“Let’s say you get a bad burn on your hand, and it gets infected with one of these resistant strains of bacteria,” Dove said. “It’s possible that dressing that burn with a combination of silver nanoparticles and antibiotics could both clear that infection and prevent those resistant bacteria from spreading elsewhere.”
Though antibiotics mainly target bacteria, they can also damage human and animal cells. Using a microscopic worm called C. elegans, the researchers confirmed that the silver nanoparticles did not also make the antibiotic more toxic to non-bacterial cells.
Building on the study’s promising findings, the scientists next plan to seek FDA authorization for clinical trials and work with UF Innovate to patent an antimicrobial product that uses silver nanoparticles.

News
DREAM complex could hold key to fighting cancer and living longer
DNA may be the stuff of life, but if it isn't repaired in our bodies on a regular basis, it can lead to diseases that can cause some pretty unpleasant types of death. DNA [...]
A Promising New Pathway in the Battle Against Aggressive Prostate Cancer
Neuronal Molecule Makes Prostate Cancer More Aggressive Researchers discover a potential therapeutic avenue against an aggressive form of prostate cancer. Prostate cancer is the second most common cancer and the second leading cause of [...]
Nasal Vaccines: Stopping the COVID-19 Virus Before It Reaches the Lungs
The Pfizer-BioNTech and Moderna mRNA vaccines have played a large role in preventing deaths and severe infections from COVID-19. But researchers are still in the process of developing alternative approaches to vaccines to improve [...]
NASA Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field – with video
NASA is actively monitoring a strange anomaly in Earth's magnetic field: a giant region of lower magnetic intensity in the skies above the planet, stretching out between South America and southwest Africa. This vast, developing [...]
New, Better Models Show How Infectious Diseases Like COVID-19 Spread
Infectious diseases such as COVID-19 can spread rapidly across the globe. Models that can predict how such diseases spread will strengthen national surveillance systems and improve public health decision-making. The COVID-19 pandemic has emphasized the [...]
Human Antibodies Discovered That Can Block Multiple Coronaviruses Including COVID-19
Results from a Scripps Research and UNC team pave the way for a vaccine and therapeutic antibodies that could be stockpiled to fight future coronavirus pandemics. A team of scientists from Scripps Research and [...]
Nanotechnology could be used to treat lymphedema
The human body is made up of thousands of tiny lymphatic vessels that ferry white blood cells and proteins around the body, like a superhighway of the immune system. It's remarkably efficient, but if [...]
DNA Nanotechnology Tools – From Design to Applications
Suite of DNA nanotechnology devices engineered to overcome specific bottlenecks in the development of new therapies, diagnostics, and understanding of molecular structures. DNA nanostructures with their potential for cell and tissue permeability, biocompatibility, and [...]
Regenerating bone with deer antler stem cells
Scientists from a collection of Chinese research institutions collaborated on a study of organ regeneration in mammals, finding deer antler blastema progenitor cells are a possible source of conserved regeneration cells in higher vertebrates. [...]
AI Takes On Cancer: Analysis of Mutations Could Lead to Improved Therapy
Cancer is a complex and diverse disease, and its range of associated mutations is vast. The combination of these genomic changes in an individual is referred to as their “mutational landscape.” These landscapes vary [...]
Exposing tumours to bacteria converts immune cells to cancer killers
New research on inflammation could lead to better treatments to improve outcomes for people with advanced or previously untreatable cancers. Introducing bacteria to a tumour’s microenvironment creates a state of acute inflammation that triggers [...]
Smart nanotechnology for more accurate delivery of insulin
More efficient and longer lasting glucose-responsive insulin that eliminates the need for people with type 1 diabetes to measure their glucose levels could be a step closer thanks to a Monash University-led project. Published [...]
Efficiently Harvesting Rare Earth Elements From Wastewater Using Exotic Bacteria
The novel strains of cyanobacteria exhibit a fast and efficient “biosorption” of rare earth elements, making recycling possible. Rare earth elements (REEs) are a set of 17 metallic elements that possess similar chemical properties. [...]
Resisting Treatment: Cancer Cells Shrink or Super-Size To Survive
A new approach to image analysis has uncovered how cancer cells manipulate their size as a means of resisting treatment. Researchers have discovered that cancer cells are capable of either shrinking or super-size themselves [...]
New Research Explains Why Children Avoid Severe COVID-19 Symptoms
According to new research, children exhibit a robust initial immune response to the coronavirus, however, they are unable to transfer this response to long-lasting memory T cells like adults do. Researchers led by scientists [...]
Scientists Unravel Protein Map of Mitochondria
A new study sheds light on the organization of proteins within mitochondria. Mitochondria, the “powerhouses” of cells, play a crucial role in the energy production of organisms and are involved in various metabolic and [...]