Self-healable ionic sensing materials with fatigue resistance are imperative in robotics and soft electronics for extended service life. The existing artificial ionic skins with self-healing capacity were prepared by network reconfiguration, constituting low-energy amorphous polymer chains. Consequently, these materials suffer from a low fatigue threshold and are susceptible to crack propagation.
In an article published in the journal Nature Communications, a self-healable, fatigue-free hybrid ionic skin was engineered. Ruggedness was imparted by incorporating an elastic nanomesh that was a complex network of nanofibers. Thus, the engineered ionic skin mimicked the human skin with a repairable interwoven structure based on nanofibers.
The designed hybrid ionic skin exhibited a fatigue threshold of 2950 joules per square meter while conserving stretchability, skin-like compliance, and strain adaptive stiffening behavior. The nanofibers in the material endowed the ionic matrix with moisture breathing capacity due to the induced tension, leading to a gauge factor of 66.8, which was higher than the existing artificial ionic skins. The present concept created a new path toward durable ion-conducting materials that mimicked the incomparable combinatory properties of human skin.
Integrating Nanofibers into Artificial Skin
Human skin is a multifunctional organ that is self-healing and protective with good sensing capacity. Various artificial skins were developed based on the properties and functionalities approximating those of natural skin. To this end, stretchability, conductivity, toughness, softness, healing ability, and durability are desirable in designing materials for soft robotics and human-machine interface applications.
Although self-healing capacity in these materials permits a long service life, their resistance against crack propagation during high fatigue loads further begets robustness in them. Incorporating physical crosslinks into the ion-conducting network causes chain rearrangement leading to network reconfiguration.
The ion-rich nanofibrous yet repairable structure of human skin reconciles the interchange between fatigue resistance and healing capacity, defined by a soft interwoven elastic matrix enveloping the stiff collagen fibril scaffold. The healing of human skin is based on dermal fibroblasts and repairing the crack tip at the collagen nanofibrils imparting high fracture toughness. Thus, the human skin can withstand tear fractures and deformations like muscles.
Nanofibers have diameters between 1 nanometer and 1 micrometer and are made from synthetic or natural materials. Nanofibers are commonly obtained via the electrospinning technique and resemble the natural extracellular matrix (ECM). The polymer-based nanofibers have a large surface area-to-volume ratio, high porosity, appreciable mechanical strength, and flexibility.
These properties of nanofibers have a significant effect on cell adhesion, proliferation, and differentiation, as reported in previous studies. Hence matrices based on nanofibers are explored as scaffolds in tissue engineering.
Nanofiber Reinforced Artificial Ionic Skin
In the present work, a high-energy, elastic, and self-healable nanomesh scaffold was embedded into another self-healable soft ionic matrix to design an artificial sensing ionic skin. This hybrid structure showed high fracture energy of 16.3 kilojoules per square meter, fatigue threshold of 2950 joules per square meter, 680% stretchability, and 67.5 megapascals of strain-stiffening response.
The tension-induced rearrangement of nanofibers caused reversible moisture breathing of the hygroscopic ionic matrix and led to a gauge factor of 66.8 (higher than the existing artificial skin materials) for the ionic conductors that are intrinsically stretchable.
Moreover, such hybrid ionic skin based on nanofibers had a few intriguing properties that mimicked the natural human skin, including self-healing efficiency of up to 85%, modulus of approximately 1.8 megapascals, 37 times enhanced strain-adaptive stiffness, 0.11 siemens per centimeter of ionic conductivity, and superior strain sensation. The prepared hybrid ionic skin was adhesive, transparent, and ambiently stable.
Thus, the reported artificial ionic skin resembled the human skin in terms of sensing and mechanical properties and had potential applications in durable sensors for utilization in human-machine interfaces and wearable electronics.
Conclusion
To conclude, transparent hybrid ionic skin based on nanofibers was designed using elastic polyurethane (PU) nanomesh, composed of a network of nanofibers with self-healing capacity and a supramolecular ionic matrix with a high modulus ratio.
The hybrid ionic skin was endowed with desirable properties, including softness (modulus approximately 1.8 megapascals), self-healing capacity (up to 85%), stretchability (680%), fatigue resistance (approximately 2950 joules per square meters), and strain-adaptive stiffening (37 times enhanced stiffness).
The high gauge factor of 66.8, which is the strain-sensing parameter, was due to the induced tension that led to a rearrangement of nanofiber’s alignment resulting in a reversible moisture breathing effect in a hygroscopic ionic matrix driven by water-sensitive ionic complexations.
In concurrence with its adhesiveness, transparency, and stability at room temperature, the designed ionic skin demonstrated its potential as a durable sensor with high sensitivity and applicability in wearable electronics.

News
FedEx for your cells: this biological delivery service could treat disease
Researchers want to know why cells produce tiny packages called vesicles — and whether these bundles could be used for therapy. Graça Raposo was a young postdoc in the Netherlands in 1996 when she [...]
New study on the genetic magnetization of living bacteria shows great potential for biomedicine
Magnetic bacteria possess extraordinary capabilities due to the magnetic nanoparticles, the magnetosomes, which are concatenated inside their cells. A research team at the University of Bayreuth has now transferred all of the approximately 30 [...]
Ultrathin Nanotech Promises to Help Tackle Antibiotic Resistance
Researchers have invented a nano-thin superbug-slaying material that could one day be integrated into wound dressings and implants to prevent or heal bacterial infections. The innovation – which has undergone advanced pre-clinical trials – [...]
Researchers Discover New Mnemomic Networks in the Brain
The medial temporal lobe (MTL) houses the human memory system. Broadly, it contains the hippocampus, parahippocampal cortex, perirhinal cortex, and entorhinal cortex. “One big challenge in studying the MTL is its great anatomical variability [...]
The Surprising Origin of a Deadly Hospital Infection
C. diff might not originate from external transmission but rather from within the infected patient themselves. Hospital staff dedicate significant effort to safeguard patients from infections during their hospital stay. Through practices ranging from [...]
Google AI breakthrough – huge step in finding genes that cause diseases
Google says it has made a significant step in identifying disease-causing genes, which could help spot rare genetic disorders. A new model named AlphaMissense is able to confidently classify 89 per cent of all [...]
New Study: Everyday Pleasures Can Boost Cognitive Performance
MINDWATCH study reveals cognitive peaks with everyday pleasures. Listening to music and drinking coffee are the sorts of everyday pleasures that can impact a person’s brain activity in ways that improve cognitive performance, including [...]
Moderna reveals new highly targeted COVID-19 vaccine mRNA-1283
Moderna has developed a new and improved version of its COVID-19 vaccine. The unique formulation (mRNA-1283) reduces the vaccine's content from the full-length SARS-CoV-2 spike protein to a narrowly focused encoding of just two [...]
New nanotech weapon takes aim at hard-to-treat breast cancer
Breast cancer in its various forms affects more than 250,000 Americans a year. One particularly aggressive and hard-to-treat type is triple-negative breast cancer (TNBC), which lacks specific receptors targeted by existing treatments. The rapid [...]
Scientists upcycle plastics into liquids that can store hydrogen energy
Scientists from Nanyang Technological University, Singapore (NTU Singapore) have created a process that can upcycle most plastics into chemical ingredients useful for energy storage, using light-emitting diodes (LEDs) and a commercially available catalyst, all [...]
Yale Scientists Uncover How the Immune System Can Alter Our Behavior
The mere scent of seafood can severely sicken those allergic to it — and therefore they are more likely to avoid it. Similarly, individuals who experience food poisoning from a specific dish tend to [...]
Whirlwind Tech – The Future of Energy-Efficient Spintronics Computing
Researchers in Germany and Japan have been able to increase the diffusion of magnetic whirls, so-called skyrmions, by a factor of ten. In today’s world, our lives are unimaginable without computers. Up until now, [...]
Omicron’s Silver Lining: Significantly Lower Risk of Long COVID
Omicron infections have a lower risk of long COVID than earlier variants, according to a study analyzing data from 11,000 participants. The risk of developing long COVID is significantly lower following an infection with [...]
The Hidden Mechanism Connecting Diabetes and Cancer
Researchers have discovered that insulin resistance, typically linked with type 2 diabetes, is also present in cancer patients and can accelerate the spread of the disease. In the 1920s, scientists found that the urine [...]
Scientists Unveil Urea’s Secret Role in the Origin of Life
Scientists from ETH Zurich and the University of Geneva have developed a new technique that allows them to observe chemical reactions taking place in liquids at extremely high temporal resolution. This innovation enables them to track how molecules [...]
Viagra Lowers Alzheimer’s Risk by Almost 70%, Early Study Finds
Research published recently suggests that Pfizer’s erectile dysfunction drug Viagra can decrease the risk of developing Alzheimer’s disease by up to 69 percent. The research, which was published in Nature, found that the medication has [...]