Largest discovery of new virus species sheds light on the hidden virosphere.
Artificial intelligence (AI) has been used to reveal details of a diverse and fundamental branch of life living right under our feet and in every corner of the globe. These viruses not only play significant roles in human health but are also prevalent in extreme environments, highlighting their crucial roles in ecosystems and offering insights into viral evolution and diversity.
Using a machine learning tool, researchers have discovered 161,979 new species of RNA virus, a breakthrough that could dramatically enhance our understanding of Earth’s biodiversity and assist in identifying millions more viruses yet to be characterized.
Published on October 9 in the journal Cell and conducted by an international team of researchers, the study is the largest virus species discovery paper ever published.
Unprecedented Viral Diversity Unveiled
“We have been offered a window into an otherwise hidden part of life on earth, revealing remarkable biodiversity,” said senior author Professor Edwards Holmes from the School of Medical Sciences in the Faculty of Medicine and Health at the University of Sydney.
“This is the largest number of new virus species discovered in a single study, massively expanding our knowledge of the viruses that live among us,” Professor Holmes said. “To find this many new viruses in one fell swoop is mind-blowing, and it just scratches the surface, opening up a world of discovery. There are millions more to be discovered, and we can apply this same approach to identifying bacteria and parasites.”
The Role of RNA Viruses in Extreme Environments
Although RNA viruses are commonly associated with human disease, they are also found in extreme environments around the world and may even play key roles in global ecosystems. In this study they were found living in the atmosphere, hot springs, and hydrothermal vents.
“That extreme environments carry so many types of viruses is just another example of their phenomenal diversity and tenacity to live in the harshest settings, potentially giving us clues on how viruses and other elemental life-forms came to be,” Professor Holmes said.
Advancements in Viral Identification via AI
The researchers built a deep learning algorithm, LucaProt, to compute vast troves of genetic sequence data, including lengthy virus genomes of up to 47,250 nucleotides and genomically complex information to discover more than 160,000 viruses.
“The vast majority of these viruses had been sequenced already and were on public databases, but they were so divergent that no one knew what they were,” Professor Holmes said. “They comprised what is often referred to as sequence ‘dark matter’. Our AI method was able to organize and categorize all this disparate information, shedding light on the meaning of this dark matter for the first time.
The AI tool was trained to compute the dark matter and identify viruses based on sequences and the secondary structures of the protein that all RNA viruses use for replication.
Future Directions and Applications of AI in Virology
It was able to significantly fast-track virus discovery, which, if using traditional methods, would be time intensive.
Co-author from Sun Yat-sen University, the study’s institutional lead, Professor Mang Shi said: “We used to rely on tedious bioinformatics pipelines for virus discovery, which limited the diversity we could explore. Now, we have a much more effective AI-based model that offers exceptional sensitivity and specificity, and at the same time allows us to delve much deeper into viral diversity. We plan to apply this model across various applications.”
Co-author Dr Zhao-Rong Li, who researches in the Apsara Lab of Alibaba Cloud Intelligence, said: “LucaProt represents a significant integration of cutting-edge AI technology and virology, demonstrating that AI can effectively accomplish tasks in biological exploration. This integration provides valuable insights and encouragement for further decoding of biological sequences and the deconstruction of biological systems from a new perspective. We will also continue our research in the field of AI for virology.”
Professor Holmes said: “The obvious next step is to train our method to find even more of this amazing diversity, and who knows what extra surprises are in store.”
Reference: “Using artificial intelligence to document the hidden RNA virosphere” by Xin Hou, Yong He, Pan Fang, Shi-Qiang Mei, Zan Xu, Wei-Chen Wu, Jun-Hua Tian, Shun Zhang, Zhen-Yu Zeng, Qin-Yu Gou, Gen-Yang Xin, Shi-Jia Le, Yin-Yue Xia, Yu-Lan Zhou, Feng-Ming Hui, Yuan-Fei Pan, John-Sebastian Eden, Zhao-Hui Yang, Chong Han, Yue-Long Shu, Deyin Guo, Jun Li, Edward C. Holmes, Zhao-Rong Li and Mang Shi, 9 October 2024, Cell.
DOI: 10.1016/j.cell.2024.09.027
The researchers declare no competing interests. The research was supported by the National Natural Science Foundation of China, the Shenzhen Science and Technology Program, the Natural Science Foundation of Guangdong Province, the Guangdong Province “Pearl River Talent Plan” Innovation and Entrepreneurship Team Project, the Hong Kong Innovation and Technology Fund (ITF) and the Health and Medical Research Fund. Professor Holmes is funded by a National Health and Medical Research Council of Australia Investigator grant and by AIR@InnoHK administered by the Innovation and Technology Commission, Hong Kong Special Administrative Region, China.

News
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]
Breakthrough Drug Restores Vision: Researchers Successfully Reverse Retinal Damage
Blocking the PROX1 protein allowed KAIST researchers to regenerate damaged retinas and restore vision in mice. Vision is one of the most important human senses, yet more than 300 million people around the world are at [...]
Differentiating cancerous and healthy cells through motion analysis
Researchers from Tokyo Metropolitan University have found that the motion of unlabeled cells can be used to tell whether they are cancerous or healthy. They observed malignant fibrosarcoma [...]