Boston University researchers have developed a new, “intelligent” metamaterial – which costs less than ten dollars to build – that could revolutionize magnetic resonance imaging (MRI), making the entire MRI process faster, safer, and more accessible to patients around the world.
The technology, which builds on previous metamaterial work by the team, was described in a new paper in Advanced Materials (“Intelligent Metamaterials Based on Nonlinearity for Magnetic Resonance Imaging”).
MRI is used by clinicians to diagnose medical problems by spotting abnormalities that could indicate anything from a torn meniscus to muscular dystrophy. But MRIs are expensive, expose patients to radiation, and they take a long time–often the greater part of an hour for a single scan. Finding enough MRI time for waiting patients can be a problem, even in US hospitals, but in hospitals in countries like India, waiting periods of a year or more can put patients’ lives at risk.
So how do we speed up the MRI process without jeopardizing the quality of imaging? Xin Zhang, a BU College of Engineering professor of mechanical engineering and a Photonics Center professor, and a team of researchers that includes Stephan Anderson, a Boston Medical Center radiologist and BU School of Medicine professor of radiology, and Xiaoguang Zhao, a MED assistant research professor of radiology, are getting creative with metamaterials to solve the problem.
MRI works by generating a powerful magnetic field and sending radio waves into a patient’s body. “An MRI’s magnetic field is many thousands of times stronger than the Earth’s magnetic field,” says Zhao. “A precisely orchestrated series of higher-energy radio waves are sent into the human body, and the tissues emit lower-energy radio waves that are received by the MRI to produce an image.”

Image Credit:  Zhang et al.

Read more at nanowerk.com

News This Week

Innovations in Nanocomposites: A Future Outlook

Nanocomposites are a class of nanomaterials, where one or more nanostructured materials (organic/inorganic) are incorporated in metal, polymer, or ceramic to obtain a new material with many unique properties. Nanocomposites are applied in various [...]

New sensor detects ever smaller nanoparticles

Conventional microscopes produce enlarged images of small structures or objects with the help of light. Nanoparticles, however, are so small that they hardly absorb or scatter light and, hence, remain invisible. Optical resonators increase [...]

How Will the COVID Pills Change the Pandemic?

From a new article By Dhruv Khullar in the New York Times: New antiviral drugs are startlingly effective against the coronavirus—if they’re taken in time. n March, 2020, researchers at Emory University published a paper about a [...]

3D printing approaches atomic dimensions

 A new 3D printing technology makes the production of complex metallic objects at the nanoscale possible. A team of chemists led by a scientist from the University of Oldenburg has developed an electrochemical technique [...]