In recent years, the number of targeted cancer drugs has continued to rise. However, conventional chemotherapeutic agents still play an important role in cancer treatment. These include platinum-based cytotoxic agents that attack and kill cancer cells. But these agents also damage healthy tissue and cause severe side effects.
Researchers at ETH Zurich have now identified an approach that allows for a more selective cancer treatment with drugs of this kind (Angewandte Chemie, “Peptide-Coated Platinum Nanoparticles with Selective Toxicity against Liver Cancer Cells”).
Platinum can be cytotoxic when oxidised to platinum(II) and occurs in this form in conventional platinum-based chemotherapeutics. Non-oxidised platinum(0), however, is far less toxic to cells. Based on this knowledge, a team led by Helma Wennemers, Professor at the Laboratory of Organic Chemistry, and Michal Shoshan, a postdoc in her group, looked for a way to introduce platinum(0) into the target cells, and only then for it to be oxidised to platinum(II).
To this end, they used non-oxidised platinum nanoparticles, which first had to be stabilized with a peptide. They screened a library containing thousands of peptides to identify a peptide suitable for producing platinum nanoparticles (2.5 nanometres in diameter) that are stable for years.

Image Credit:  Shutterstock

Read more at nanowerk.com

News This Week

New Adjustments to Hyperspectral Microscopy of Nanomaterials

Hyperspectral microscopy is an advanced visualization technique that combines hyperspectral imaging with state-of-the-art optics and computer software to enable rapid identification of nanomaterials. Since hyperspectral datacubes are large, their acquisition is complicated and time-consuming. [...]

Through the quantum looking glass

An ultrathin invention could make future computing, sensing and encryption technologies remarkably smaller and more powerful by helping scientists control a strange but useful phenomenon of quantum mechanics, according to new research recently published [...]