Would you like to help in some research on the regulation of what future AI-driven nanomedicines should look like? If so, researchers at the University of Bristol are looking for volunteers to discuss ethical and regulatory issues of using AI driven cancer therapies with swarm behaviour through a series of interviews. | |
The research is part of the SWARM study – Small robots With collective behaviour as AI-driven cancer therapies; building Regulations for future nanoMedicines. | |
The researchers are looking for: | |
|
|
Volunteers must be over the age of 18 years old to take part. We would love to hear from you. You can find out more about the study on our SWARM study webpage or by contacting Matimba Swana at matimba.swana@bristol.ac.uk. | |
If you would like to take part please complete this Expression of Interest Form. | |
About the SWARM study |
Cancer occurs when abnormal cells divide in an uncontrolled way. Many cancers can be cured. But in some people cancer can return. Cancer drugs, such as chemotherapy, need to be able to kill all the cancer cells, but this means they can also kill healthy cells. | |
Nanomedicine is the medical application of nanotechnology which works on tiny scales called ‘nanometres’ (one-billionth of a metre). Nanoparticles are nanosized particles that can assist the delivery of chemotherapy drugs to cancer cells. Scientists and Engineers can use simulations for selecting nanoparticles so drugs can more effectively reach the tumour while avoiding side effects. | |
Nanoswarms | |
Using simulations, scientists and engineers are working on adding swarm behaviour (present in social animals such as birds, ants, fish and termites) to nanoparticles and tiny robots (nanobots). Nanoswarms are multiple nanoparticles or nanobots that can interact with each other or their environment to achieve a task (e.g. deliver chemotherapy to a tumour without killing healthy cells), exhibiting collective behaviour inspired by swarm behaviour. | |
SWARM study – aim & research question | |
This project is investigating the ethics and regulations of the first in-human clinical trial of nanoswarms. We will be using interviews initially and focus groups in the next phase to explore the attitudes of stakeholders towards this swarm technology in healthcare, combined with ethical/legal analysis to consider how swarm medicine should be regulated in clinical trials. | |
The aim is to explore how nanoswarm medicine should be regulated once this technology is available for first-in human clinical trials. | |
Researchers | |
This study is being organised by Matimba Swana, PhD student in the Trustworthy Autonomous Systems in Functionality Node and Academic Supervisors; Dr. Sabine Hauert, Reader (Associate Professor) in Swarm Engineering and Prof. Jonathan Ives, Professor of Empirical Bioethics & Deputy Director of Centre for Ethics in Medicine. | |
Would you like to participate? |
|
If you are aged 18 or over, we would love to hear from you. For the interviews we are looking for oncology healthcare professionals or oncology patients or those working in drug delivery regulation or in nanomedicine research. You do not need to have any previous knowledge of nanoswarms to participate as we will show you case studies to introduce you to the technologies. | |
Your contribution would be very helpful! For more details please contact Matimba Swana at matimba.swana@bristol.ac.uk OR complete this Expression of Interest form for interviews. | |
We are still in the first phase of this study, so will not start interviews until later in the year, but please complete the Expression of Interest form for interviews and we will be in touch to schedule an interview. We will start recruiting for focus groups in early 2023. | |
Five fun facts |
|
|
|
The SWARM study is part of a larger UKRI-funded PhD which is part of the Trustworthy Autonomous Systems Node in Functionality research programme, which is a multidisciplinary collaboration between ethicists, sociologists, computer scientists and engineers working together to produce guidelines for the development of trustworthy autonomous systems with evolving functionality. | |
Research Ethics Approval |
|
This project has been reviewed and approved by the University of Bristol Faculty of Engineering Research Ethics Committee (Ref: 11141). | |
Find out more before participating from these PDFs: | |
SWARM study summary | |
SWARM flyer Interviews | |
Participant Information Sheet for Interviews | |
SWARM flyer focus groups | |
Participant Information for Focus Groups (will be live once interviews are completed) | |
Expression of Interest for Focus Groups (will be live once interviews are completed) |

News
Advancing Pancreatic Cancer Treatment with Nanoparticle-Based Chemotherapy
Pancreatic cancer, a particularly lethal form of cancer and the fourth leading cause of cancer-related deaths in the western world, often remains undiagnosed until its advanced stages due to a lack of early symptoms. [...]
The ‘jigglings and wigglings of atoms’ reveal key aspects of COVID-19 virulence evolution
Richard Feynman famously stated, "Everything that living things do can be understood in terms of the jigglings and wigglings of atoms." This week, Nature Nanotechnology features a study that sheds new light on the evolution of the coronavirus [...]
AI system self-organizes to develop features of brains of complex organisms
Cambridge scientists have shown that placing physical constraints on an artificially-intelligent system—in much the same way that the human brain has to develop and operate within physical and biological constraints—allows it to develop features [...]
How Blind People Recognize Faces via Sound
Summary: A new study reveals that people who are blind can recognize faces using auditory patterns processed by the fusiform face area, a brain region crucial for face processing in sighted individuals. The study employed [...]
Treating tumors with engineered dendritic cells
Cancer biologists at EPFL, UNIGE, and the German Cancer Research Center (Heidelberg) have developed a novel immunotherapy that does not require knowledge of a tumor's antigenic makeup. The new results may pave the way [...]
Networking nano-biosensors for wireless communication in the blood
Biological computing machines, such as micro and nano-implants that can collect important information inside the human body, are transforming medicine. Yet, networking them for communication has proven challenging. Now, a global team, including EPFL [...]
Popular Hospital Disinfectant Ineffective Against Common Superbug
Research conducted during World Antimicrobial Awareness Week examines the effects of employing suggested chlorine-based chemicals to combat Clostridioides difficile, the leading cause of antibiotic-related illness in healthcare environments worldwide. A recent study reveals that a [...]
Subjectivity and the Evolution of AI Philosophy
An Historical Overview of the Philosophy of Artificial Intelligence by Anton Vokrug Many famous people in the philosophy of technology have tried to comprehend the essence of technology and link it to society and human [...]
How Lockdowns Shaped the Virus: AI Uncovers COVID-19’s Evolutionary Secrets
A new research study shows that human behavior, like lockdowns, influences the evolution of COVID-19, leading to strains that are more transmissible earlier in their lifecycle. Using artificial intelligence technology and mathematical modeling, a research [...]
Groundbreaking therapy approved: chances of cure for 7000 diseases:
Hereditary diseases are usually not curable. Now, however, an epochal turning point is taking place in medicine: For the first time ever, a therapy with the CRISPR/Cas9 gene scissors has received approval. According to [...]
Uncovering the Genetic Mystery: Why Some Never Show COVID-19 Symptoms
New study shows that common genetic variation among people is responsible for mediating SARS-CoV-2 asymptomatic infection. Have you ever wondered why some people never became sick from COVID-19? A study published recently in the journal Nature shows that common [...]
AI maps tumor geography for tailored treatments
Researchers have integrated AI approaches from satellite mapping and community ecology to develop a tool to interpret data obtained from tumor tissue imaging, with the aim of implementing a more individualized approach to cancer care. [...]
Lung cancer cells’ ‘memories’ suggest new strategy for improving treatment
A new understanding of lung cancer cells' "memories" suggests a new strategy for improving treatment, Memorial Sloan Kettering Cancer Center (MSK) researchers have found. Research from the lab of cancer biologist Tuomas Tammela, MD, Ph.D. [...]
Artificial sensor similar to a human fingerprint can recognize fine fabric textures
An artificial sensory system that is able to recognize fine textures—such as twill, corduroy and wool—with a high resolution, similar to a human finger, is reported in a Nature Communications paper. The findings may help improve the subtle [...]
How tiny hinges bend the infection-spreading spikes of a coronavirus
A coronavirus uses protein "spikes" to grab and infect cells. Despite their name, those spikes aren't stiff and pointy. They're shaped like chicken drumsticks with the meaty part facing out, and the meaty part [...]
A Scientist Says the Singularity Will Happen by 2031
“The singularity,” the moment where AI is no longer under human control, is less than a decade away—according to one AI expert. More resources than ever are being poured into the pursuit of artificial [...]