A research team headed by chemist Prof Bart Jan Ravoo and biochemist Prof Volker Gerke has designed nanocontainers made of sugar and protein components. These containers are taken up by cells through natural processes and can thereby transport substances that normally cannot penetrate the cell membrane – such as drugs or labelled substances for the investigation of cell functions – into cells. | |
The study was published in Advanced Science (“Biodegradable and Dual-Responsive Polypeptide-Shelled Cyclodextrin-Containers for Intracellular Delivery of Membrane-Impermeable Cargo”). | |
![]() |
|
Living human cancer cell in cell culture, its actin skeleton stained with fluorescent phalloidin. This toxic substance was only able to enter the cell by means of the newly developed nanocontainers. (Image: Kudruk & Pottanam Chali et al./Adv Sci 2021 (modified colours)) | |
Nanocontainers can transport substances into cells where they can then take effect. This is the method used in, for example, the mRNA vaccines currently being employed against Covid-19 as well as certain cancer drugs. In research, similar transporters can also be used to deliver labelled substances into cells in order to study basic cellular functions. | |
To take advantage of their full potential, scientists are conducting intensive research into how nanocontainers interact with biological environments and how they have to be chemically constructed to deliver cargo into cells in the gentlest and most controllable way possible. | |
Scientists at the University of Münster have recently developed a new type of nanocontainer that is constructed entirely from biological components. Unlike other cargo transporters, these are not based on lipids but on sugar compounds which are sealed with a shell of protein structures – so-called polypeptides – the thickness of which is precisely tailored. | |
“We do produce the components of our nanocontainers synthetically, but they are taken up by cells and – due to the overall structure we have developed – also degraded by them just like naturally occurring substances,” explains chemist Prof Bart Jan Ravoo. | |
“For the degradation of the container shell inside the cell, we make use of two naturally occurring mechanisms – as a result, the transported substances are released rapidly, as soon as they arrive in the cell,” adds biochemist Prof Volker Gerke. | |
The scientists want to use the tiny nanocontainers, which are about 150 nanometers in diameter, to load cells with labelled biologically relevant lipids that can be used to study transport processes occurring within the cell membrane. In addition, they plan to further develop the chemical design of the containers in such a way that they are, for example, only taken up by certain types of cells or only release their cargo when stimulated by external light. | |
In the future, transport systems built from sugar and protein components might also be suitable for applications in living organisms to deliver drugs specifically into certain tissues and cells. | |
Details on methods and results: | |
Bioinspired materials organize themselves, forming cargo-carrying containers |
|
To synthesize the new cargo transporters, the scientists used sugar compounds (modified cyclodextrins) that are similar in structure – and thus behaviour – to certain lipids naturally found in every cell. Similar to the protective cell membrane lipids, the sugar structures arrange themselves, forming a shell in which they enclose the substances to be transported. However, because the resulting container is still leaky and would lose its cargo over time, the scientists added protein structures (polypeptides) that form a sealing layer around the container. | |
“To test how thick the sealing layer needed to be, we varied the length of the peptide sequences and tailored them so that the containers stably encapsulated their cargo,” explains Sharafudheen Pottanam Chali, a chemistry doctoral student and one of the study’s two lead authors. | |
Nanocontainers that use a natural pathway into cells |
|
In the next step, the scientists investigated whether and how the newly developed nanocontainers were taken up by cells. Their hypothesis was that this happens via so-called endocytosis. In this process, the cells internalize a part of their cell membrane and pinch it off, creating small vesicles called endosomes in which extracellular material is transported into the cell. To test this, the scientists used a sugar compound (dextran) known to be taken up by endocytosis. They treated their cell cultures with red fluorescent dextran and, at the same time, added nanocontainers filled with a green fluorescent cargo (pyranine). | |
“In the fluorescence microscope, it became visible that both substances were taken up into the cells equally and their fluorescence overlapped visibly – therefore we could conclude that the nanocontainers, just like the dextran, were efficiently taken up by the cells through the endosomal transport process,” explains Sergej Kudruk, a biochemistry doctoral student and also a lead author of the study. | |
The scientists confirmed this for two different cell types – human blood vessel cells and cancer cells. | |
Container shell is degraded by enzymes in the cells’ endosomes |
|
Conditions inside the endosomes differ from those of the cellular environment, something which the scientists already were considering when designing their nanocontainers. They constructed the containers in such a way that the altered environment in the endosomes destabilizes and partially degrades the polypeptide shell – the nanocontainers thus become leaky and release their cargo into the inside of the cell. | |
“When the containers are taken up into endosomes, two types of enzymes, which we knew to be present in endosomes and which can contribute to the degradation of the shell at specific sites, come into play,” explains Sergej Kudruk. | |
“So-called reductases degrade the disulfide bridges that were previously established to crosslink the peptide molecules of our nanocontainers – in addition, peptidases cleave the peptide molecules themselves,” adds Sharafudheen Pottanam Chali. | |
The scientists also tested the degradability of the container shell outside the cell. To do so, they loaded the containers with a fluorescent dye and simulated part of the complex endosomal microenvironment by using the enzyme trypsin as well as reducing agents. After treatment, the dye leaked out immediately. |

News
Lipid nanoparticles carry gene-editing cancer drugs past tumor defenses
As they grow, solid tumors surround themselves with a thick, hard-to-penetrate wall of molecular defenses. Getting drugs past that barricade is notoriously difficult. Now, scientists at UT Southwestern have developed nanoparticles that can break [...]
Graphene Nanosensor Detects Biomarkers Through Tears
In an article recently published in the journal Talanta, researchers demonstrated a new approach to enable the specific detection of biomarkers in human tear by employing an aptamer-based graphene affinity nanosensor. The ability to detect [...]
How Nanotechnology Can Make a Splash in Aquaculture
Selenium (Se) is an essential element found in aquatic feeds that promotes the proper development, wellbeing, and fitness of marine animals. Selenium can be transformed into nanomaterials that are more easily accessible, absorbed, and consumed by [...]
Super-Resolution Imaging Method For Multiple Fluorescence Microscopy Applications
In an article recently published in the journal Nanotechnology, researchers employed a single particle imaging method for fluorescence excitation with moderate intensity to achieve spatial resolution. Here, the semiconductor nanocrystals were accessed, whose emission lifetimes [...]
Trials to begin on new SA COVID-19 vaccine
A new COVID-19 vaccine developed in South Australia and administered with a needle-free device is to begin human trials. Designed by University of Adelaide researchers the DNA vaccine also targets the Omicron variant of [...]
Towards Carbon Clean Manufacturing with Eco-Friendly Nano-Lubricants
Grinding is an essential manufacturing process, yet the heat due to friction associated with the process causes damage to the part being processed. Lubrication is used to reduce friction; however, traditional petroleum-based lubricants can [...]
Researchers develop hybrid sensor that could help diagnose cancer
A team of researchers from HSE University, Skoltech, MPGU, and MISIS have developed a nanophotonic-microfluidic sensor whose potential applications include cancer detection, monitoring and treatment response assessment. Today, the device can identify gases and [...]
Scientists Develop ‘Nanomachines’ That Can Penetrate And Kill Cancer Cells
Researchers have made a scientific breakthrough with the development of ‘nanomachines’ that can kill cancerous cells. The research team headed by Dr Youngdo Jeong from the Center for Advanced Biomolecular Recognition at the Korea Institute of Science and Technology (KIST) has engineered [...]
Green Method to Make Nanoparticles and Ultrafine Powder
A novel freeze-dissolving approach has been devised that offers greater efficiency and sustainability compared to the classic freeze-drying process to make superfine powder or nanoparticles. In the research published in the journal ACS Sustainable Chemistry & Engineering, sphere-shaped [...]
Participants wanted for study on the regulation of what future AI-driven nanomedicines should look like
Would you like to help in some research on the regulation of what future AI-driven nanomedicines should look like? If so, researchers at the University of Bristol are looking for volunteers to discuss ethical [...]
Could gold nanoparticles help treat cancer?
Gold nanoparticles are minuscule particles made of gold. From drug and gene delivery to photothermal and photodynamic therapies to screening and diagnostic tests to radiation therapy, X-ray imaging and CT scans, these small particles [...]
Carbon Dots Target Nucleolus and Monitor in Real-Time
In an article recently published in the journal Applied Surface Science, the researchers synthesized green fluorescent carbon dots (G-CDs) from 3,5-diaminobenzoic acid and citric acid. The as-prepared G-CDs were used to target the nucleolus and [...]
Green Nanoformulation for Anti-Cancer and Antibacterial Functions
Doxorubicin (DOX) is a powerful anti-cancer medication, and efforts have been made to design nanostructures for delivering it to cancerous cells. The nanostructures increase the cytotoxic effects of DOX on cancerous cells, while reducing the negative effects [...]
New drug delivery system releases therapeutic cargo only when bacteria are present
A team of Brown University researchers has developed a new responsive material that is able to release encapsulated cargo only when pathogenic bacteria are present. The material could be used to make wound dressings [...]
Hairy Cell Leukemia Complicated by Severe COVID-19: A Case Study
Novel three-drug regimen used to manage life-threatening developments. In April 2021, a 42-year-old man reached out to Brian Hill, MD, PhD, for a second opinion after being diagnosed with hairy cell leukemia following a bone [...]
We’re now in the ‘age of pandemics’. Can we stop the next one?
When the virus hunters landed in the remote African village of Yambuku in 1976, the nuns warned them to stay back. The sisters had cordoned off the area where they were caring for people [...]