A recent study conducted at Nagoya University has focussed on developing an all-in-one nanowire assay system that can capture and evaluate extracellular vesicles useful for early cancer diagnosis.
Extracellular vesicles are promising biomarkers for the early detection of cancer. Different systems are available to capture and analyze extracellular vesicles, separately.
This research was led by Associate Professor Takao Yasui of Nagoya University’s Graduate School of Engineering and his colleague Professor Yoshinobu Baba, in collaboration with Nagoya University’s Institute of Innovation for Future Society and the University of Tokyo. Scientists developed a novel analysis platform for capturing and detecting brain tumor extracellular vesicles based on nanowires at the bottom of a well plate.
Extracellular Vesicles – A Biomarker for Cancer Diagnosis
Extracellular vesicles are membrane vesicles whose diameter ranges between 30 nm and 2000 nm and contains proteins, nucleic acids, and bioactive lipids. These membrane vesicles are involved with intercellular communication and regulation of cell functions. Compared to normal cells, malignant cells (e.g., tumors) have higher extracellular vesicle secretion. Since extracellular vesicle analysis provides important information related to a disease, these are considered important biomarkers for chronic diseases, such as cancers.
Early detection of cancer improves clinical outcomes; however, this is not always possible because some types of cancer, such as brain cancer, remain asymptomatic for a prolonged period. A delayed diagnosis of a brain tumor substantially reduces the chance of the patient’s survival.
Extracellular Vesicles for Cancer Diagnosis
The new study explored the idea that analysis of brain tumor organoid-derived extracellular vesicles would enable the identification of these biomarkers for brain tumors.
Extracellular vesicles are firstly captured from biological samples using various conventional methods, such as ultracentrifugation/ differential centrifugation, immunoaffinity-based methods, polymer precipitation, filtration, aptamer-mediated sorting, and chromatography (size-based capture). After capture, these are analyzed using various immune assays, nanoplasmon-enhanced scattering assay, Western blotting after lysis treatment, and mass spectrometry, to gather important biological information.
Previously, the same team of researchers had developed a nanowire-based extracellular vesicle capture strategy from urine samples. Yasui explained why a urine sample is important. He said, “Urine tests are an effective, simple, and non-invasive method because the urine contains many informative biomolecules that can be traced back to identify the disease.”.
The zinc oxide (ZnO) nanowire system can capture extracellular vesicles based on the surface charge. This method is beneficial due to its ability to determine large numbers of microRNAs (miRNAs), simple operational process, high extracellular vesicles yield, and rapid output.
All-In-One Nanowire Assay System for Capturing and Extracellular Vesicle Analysis
To develop an all-in-one nanowire assay system, a nanowire-based capture system was combined with a conventional well plate assay for extracellular vesicle analysis. Nanowire substrates were developed by synthesizing ZnO nanowires on fused silica substrates using the hydrothermal method.
Since, compared to a weaker positively charged surface, a stronger positively charged surface can increase capture efficiency, aluminum oxide (Al2O3) was deposited on the ZnO nanowires via the atomic layer deposition (ALD) method, which developed a core-shell structure. This nanowire substrate was placed on a 24-well plate. Field emission scanning electron microscopy (FESEM) images revealed the diameter of the nanowire to be 111 nm, the height to be 1.81 μm, and the average density to be 25 nanowires/μm2.
The newly developed ZnO/Al2O3 nanowires system can capture extracellular vesicles and subsequently analyze them, i.e., detection of their membrane proteins. Initially, extracellular vesicles in urine, those in phosphate-buffered saline (PBS) and organoid-derived extracellular vesicles in culture media were incubated in the device such that extracellular vesicles could be captured on the nanowire. Subsequently, the vesicles were analyzed based on the antibody fluorescence detection method and the captured extracellular vesicle concentration in the nanowire assay system was measured.
Application of All-In-One Nanowire Assay System and Future Outlook
The newly developed all-in-one nanowire assay system was able to identify specific types of extracellular vesicle membrane proteins, i.e., CD31, CD63, and EGFRvIII, from the urine samples of patients with brain tumors. Detection of these marker proteins will indicate the presence of tumors in patients, even at the asymptomatic stage.
Yasui stated that, in the future, “users can run samples through our assay and change the detection part, by selectively modifying it to detect specific membrane proteins or miRNAs inside EVs to detect other types of cancer.” At present, the authors are focussed on advancing the device such that it can determine the expression levels of specific membrane proteins in urinary extracellular vesicles, which would enable early diagnosis of different types of cancer.
The current nanowire assay system provides a unique opportunity to create a powerful tool for the early diagnosis of cancer with high precision and accuracy.

News
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]
Instant coffee may damage your eyes, genetic study finds
A new genetic study shows that just one extra cup of instant coffee a day could significantly increase your risk of developing dry AMD, shedding fresh light on how our daily beverage choices may [...]
Nanoneedle patch offers painless alternative to traditional cancer biopsies
A patch containing tens of millions of microscopic nanoneedles could soon replace traditional biopsies, scientists have found. The patch offers a painless and less invasive alternative for millions of patients worldwide who undergo biopsies [...]
Small antibodies provide broad protection against SARS coronaviruses
Scientists have discovered a unique class of small antibodies that are strongly protective against a wide range of SARS coronaviruses, including SARS-CoV-1 and numerous early and recent SARS-CoV-2 variants. The unique antibodies target an [...]
Controlling This One Molecule Could Halt Alzheimer’s in Its Tracks
New research identifies the immune molecule STING as a driver of brain damage in Alzheimer’s. A new approach to Alzheimer’s disease has led to an exciting discovery that could help stop the devastating cognitive decline [...]
Cyborg tadpoles are helping us learn how brain development starts
How does our brain, which is capable of generating complex thoughts, actions and even self-reflection, grow out of essentially nothing? An experiment in tadpoles, in which an electronic implant was incorporated into a precursor [...]