Across the tree of life, ribosomes, the tiny protein-producing factories within cells, are ubiquitous and look largely identical. Ribosomes that keep bacteria chugging along are, structurally, not much different from those churning out proteins in our own human cells.
But even two organisms with similar ribosomes may display significant structural differences in the RNA and protein components of their mitoribosomes. Specialized ribosomes within the mitochondria (the energy-producing entities within our cells), mitoribosomes help the mitochondria produce proteins that manufacture ATP, the energy currency of the cell.
Scientists in the laboratory of Sebastian Klinge wondered how mitoribosomes evolved, how they assemble within the cell, and why their structures are so much less uniform across species. To answer these questions, they used cryo-electron microscopy to generate 3D snapshots of the small subunits of yeast and human mitoribosomes as they were being assembled. Their findings, which will be published today (December 8) in the journal Nature, shed light on the fundamentals of mitoribosome assembly, and may have implications for rare diseases linked to malfunctioning mitoribosomes.
“Three-dimensional pictures can tell us a lot about what steps are required, what proteins are involved in the process, and how you might be able to regulate the assembly of these large and complex machines,” says Nathan Harper, a graduate student in Klinge’s lab. “Cryo-EM allowed us to identify and isolate individual stages of the assembly pathway from a heterogeneous population of purified complexes, and we are able to see how these complexes change over time during assembly,” adds Chloe Burnside, also a graduate student in Klinge’s lab.
By observing this process in two different species—yeast and humans—the team managed to directly observe many similarities and differences in mitoribosome assembly. One key distinction: different proteins often were involved in otherwise similar acts of RNA folding. That’s likely because “there are common hurdles for these ribosomes,” Harper explains. “You can think about it like manufacturing two different bikes—a road bike and a mountain bike. You might need additional parts or tools for each one, but some key stages in production will be similar.”
The results provide unique insights into how molecular complexity and diversity arises in macromolecular complexes, and how assembly systems evolve along with the complexes themselves. A better understanding of mitoribosomes may also have implications for a range of severe diseases linked to mitoribosome dysfunction, such as Perrault syndrome. “We were able to map various disease-causing mutations onto different assembly factors’ structures, so that we could see how these mutations could affect the ribosome assembly process.”

News
New material discovery could revolutionize roll-out of global vaccinations
New raw vaccine materials that could make vaccines more accessible, sustainable, and ethical have been discovered. The results of the research have been published in Polymers. Adjuvants are vaccine ingredients that boost a person's immune response [...]
Scientists Develop Incredibly Lightweight Material 4 Times Stronger Than Steel
Researchers developed a light yet strong material by combining two unexpected ingredients—DNA and glass. Working at the nanoscale provides scientists with a deep understanding and precision in crafting and analyzing materials. In broader-scale production, and even [...]
New Implant Doctors Hope Will Cut Cancer Deaths in Half
Researchers at Houston's Rice University are developing an implant that could diminish deaths caused by cancer by half. The device will contain synthetically nurtured human cells and be embedded with sensors to keep track of cancer [...]
Machine learning helps predict drugs’ favorite subcellular haunts
Most drugs are small molecules that bind firmly to a specific target—some molecule in human cells that is involved in a disease—in order to work. For example, a cancer drug's target might be a [...]
Nanotechnology Breakthrough Could Help Treat Blindness
Scientists utilize nanotechnology to address a prevalent cause of vision loss. Scientists have discovered a way to use nanotechnology to create a 3D ‘scaffold’ to grow cells from the retina. This breakthrough could lead [...]
Decoding Women’s Health: Artificial Intelligence Revolutionizes PCOS Diagnosis
NIH study reviews 25 years of data and finds AI/ML can detect common hormone disorder. Artificial intelligence (AI) and machine learning (ML) can effectively detect and diagnose Polycystic Ovary Syndrome (PCOS), which is the most common [...]
Surprising Discovery Could Explain How Coronaviruses Jump Species
New insights are enhancing scientists’ efforts to stay ahead of COVID-19 and the next pandemic. Unexpected new insights into the ways COVID-19 infects cells could shed light on the virus’s adept ability to jump from one species to another [...]
A blood test for long Covid is possible, a study suggests
Scientists can now show key differences in the blood of those who recover from Covid — and those who don't. More than three years into the pandemic, the millions of people who have suffered [...]
FedEx for your cells: this biological delivery service could treat disease
Researchers want to know why cells produce tiny packages called vesicles — and whether these bundles could be used for therapy. Graça Raposo was a young postdoc in the Netherlands in 1996 when she [...]
New study on the genetic magnetization of living bacteria shows great potential for biomedicine
Magnetic bacteria possess extraordinary capabilities due to the magnetic nanoparticles, the magnetosomes, which are concatenated inside their cells. A research team at the University of Bayreuth has now transferred all of the approximately 30 [...]
Ultrathin Nanotech Promises to Help Tackle Antibiotic Resistance
Researchers have invented a nano-thin superbug-slaying material that could one day be integrated into wound dressings and implants to prevent or heal bacterial infections. The innovation – which has undergone advanced pre-clinical trials – [...]
Researchers Discover New Mnemomic Networks in the Brain
The medial temporal lobe (MTL) houses the human memory system. Broadly, it contains the hippocampus, parahippocampal cortex, perirhinal cortex, and entorhinal cortex. “One big challenge in studying the MTL is its great anatomical variability [...]
The Surprising Origin of a Deadly Hospital Infection
C. diff might not originate from external transmission but rather from within the infected patient themselves. Hospital staff dedicate significant effort to safeguard patients from infections during their hospital stay. Through practices ranging from [...]
Google AI breakthrough – huge step in finding genes that cause diseases
Google says it has made a significant step in identifying disease-causing genes, which could help spot rare genetic disorders. A new model named AlphaMissense is able to confidently classify 89 per cent of all [...]
New Study: Everyday Pleasures Can Boost Cognitive Performance
MINDWATCH study reveals cognitive peaks with everyday pleasures. Listening to music and drinking coffee are the sorts of everyday pleasures that can impact a person’s brain activity in ways that improve cognitive performance, including [...]
Moderna reveals new highly targeted COVID-19 vaccine mRNA-1283
Moderna has developed a new and improved version of its COVID-19 vaccine. The unique formulation (mRNA-1283) reduces the vaccine's content from the full-length SARS-CoV-2 spike protein to a narrowly focused encoding of just two [...]