By harnessing advanced AI, MethylGPT decodes DNA methylation with unprecedented accuracy, offering new paths for age prediction, disease diagnosis, and personalized health interventions.
In a recent study posted to the bioRxiv preprint* server, researchers developed a transformer-based foundation model, MethylGPT, for the DNA methylome.
DNA methylation is a type of epigenetic modification that regulates gene expression via methyl-binding proteins and changes in chromatin accessibility. It also helps maintain genomic stability through transposable element repression. DNA methylation has features of an ideal biomarker, and studies have revealed distinct methylation signatures across pathological states, allowing for molecular diagnostics.
Nevertheless, several analytic challenges impede the implementation of diagnostics based on DNA methylation. Current approaches rely on simple statistical and linear models, which are limited in capturing complex, non-linear data. They also fail to account for context-specific effects such as higher-order interactions and regulatory networks. Therefore, a unified analytical framework that can model complex, non-linear patterns in various tissue and cell types is urgently needed.
Recent advances in foundation models and transformer architectures have revolutionized analyses of complex biological sequences. Foundation models have also been introduced for various omics layers, such as AlphaFold3 and ESM-3 for proteomics and Evo and Enformer for genomics. The achievements of the foundation models suggest that DNA methylation analyses could be transformed with a similar approach.
The study and findings
In the present study, researchers developed MethylGPT, a transformer-based foundation model for the DNA methylome. First, they acquired data on 226,555 human DNA methylation profiles spanning multiple tissue types from the EWAS Data Hub and Clockbase. Following deduplication and quality control, 154,063 samples were retained for pretraining. The model focused on 49,156 CpG sites, which were selected based on their known associations with various traits, as this would maximize their biological relevance.
The model was pre-trained using two complementary loss functions: masked language modeling (MLM) loss and profile reconstruction loss, enabling it to accurately predict methylation at masked CpG sites. The model achieved a mean squared error (MSE) of 0.014 and a Pearson correlation of 0.929 between predicted and actual methylation levels, indicating high predictive accuracy. Researchers also evaluated whether the model could capture biologically relevant features of DNA methylation. As such, they analyzed the learned representations of CpG sites in the embedding space.
They found that CpG sites clustered based on their genomic contexts, suggesting that the model learned the regulatory features of the methylome. In addition, there was a clear separation between autosomes and sex chromosomes, indicating that MethylGPT also captured higher-order chromosomal features. Next, the team analyzed zero-shot embedding spaces. This showed a clear biological organization, clustering by sex, tissue type, and genomic context.
Major tissue types formed well-defined clusters, indicating that the model learned methylation patterns specific to tissues without explicit supervision. Notably, MethylGPT also avoided batch effects, which often confound results in complex datasets. Besides, female and male samples demonstrated consistent separation, reflecting sex-specific differences. Next, the researchers assessed the ability of MethylGPT to predict chronological age from methylation patterns. To this end, they used a dataset of over 11,400 samples from diverse tissue types.
Fine-tuning for age prediction led to robust age-dependent clustering. Notably, intrinsic age-related organization was evident even before fine-tuning. Moreover, MethylGPT outperformed existing age prediction methods (e.g., Horvath’s clock and ElasticNet), achieving superior accuracy. Its median absolute error for age prediction was 4.45 years, further demonstrating its robustness. MethylGPT was also remarkably resilient to missing data. It exhibited stable performance with up to 70% missing data, outperforming multi-layer perceptron and ElasticNet approaches.
Analysis of methylation profiles during induced pluripotent stem cell (iPSC) reprogramming showed a clear rejuvenation trajectory; samples progressively transitioned to a younger methylation state over the course of reprogramming. The model was also able to identify the point during reprogramming (day 20) when cells began showing clear signs of epigenetic age reversal. Finally, the model’s ability to predict disease risk was assessed. The pre-trained model was fine-tuned to predict the risk of 60 diseases and mortality. The model achieved an area under the curve of 0.74 and 0.72 on validation and test sets, respectively.
In addition, they used this disease risk prediction framework to evaluate the impact of eight interventions on predicted disease incidence. Interventions included smoking cessation, high-intensity training, and the Mediterranean diet, among others, each of which showed varying degrees of effectiveness across disease categories. This showed distinct intervention-specific effects across disease categories, highlighting the potential of MethylGPT in predicting intervention-specific outcomes and optimizing tailored intervention strategies.
Conclusions
The findings illustrate that transformer architectures could effectively model DNA methylation patterns while preserving biological relevance. The organization of CpG sites based on regulatory features and genomic context suggests that the model captured fundamental aspects without explicit supervision. MethylGPT also demonstrated superior performance in age prediction across different tissues. Moreover, its robust performance in handling missing data (≤ 70%) underscores its potential utility in clinical and research applications.
News
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]















